We report the electrochemical study of TiSnSb towards Li, as a negative electrode for Li-ion batteries. TiSnSb can reversibly take up more than 5 lithiums per formula unit leading to reversible capacities of 540 mA h g À1 and 4070 mA h cm À3 at 2 C rate. From complementary operando XRD and M€ ossbauer spectroscopy measurements, it was shown that during the first discharge the TiSnSb undergoes a conversion process leading simultaneously to the formation of Li-Sb and Li-Sn alloys. At the end of the discharge, Li 3 Sb and Li 7 Sn 2 were identified. Once the first discharge is achieved, both phases were shown to form Ti-Sn or Ti-Sb or Ti-Sn-Sb nanocomposites. The cycling performance of TiSnSb was shown to be excellent with maintaining 90% of the specific capacity during 60 cycles at 2 C rate. The good electrochemical performance of TiSnSb (compared to Sn and Sb) seems to be a consequence of the presence of the non-active metal. The comparative study of Ti/Sn/Sb composite demonstrated that the structural feature of the pristine material clearly impacts both the mechanism involved during the cycling and the corresponding performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.