The aim of this work is to investigate the fully nonlinear dynamics of mixed convection in porous media heated non-uniformly from below and through which an axial flow is maintained. Depending on the choice of the imposed inhomogeneous temperature profile, two cases prove to be of interest: the base flow displays an absolute instability region either detached from the inlet or attached to it. Results from a combined direct numerical simulations and linear stability approach have revealed that in the first case, the nonlinear solution is a steep nonlinear global mode, with a sharp stationary front located at a marginally absolutely unstable station. In the second configuration, the scaling laws for the establishment of a nonlinear global mode quenched by the inlet are found to agree perfectly with the theory. It is also found that in both configurations, the global frequency of synchronized oscillations corresponds to the local absolute frequency determined by linear criterion, even far from the threshold of global instability
Nous étudions la naissance de la convection dans un milieu poreux chauffé par le bas en présence d'un écoulement horizontal, et plus particulièrement l'influence de l'inertie poreuse et du rapport de forme transversal a du milieu. Nous montrons que l'état de conduction est déstabilisé au profit de rouleaux longitudinaux fixes (R.L) si a est entier et au profit de rouleaux propagatifs purement transversaux (R.T) si a est inférieur à une valeur limite a c < 1. Pour a > a c et non entier, la convection naît sous la forme de structures tridimensionnelles (3D) oscillatoires pour a > 1 ou sous la forme de R.T pour a c < a < 1 pourvu que le nombre de Reynolds ne dépasse pas une valeur critique Re * K . Ces structures sont remplacées par des R.L lorsque Re K > Re * K .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.