Mining activity is often responsible for the drainage of acid or metal-enriched waters to fluvial systems. The release of metals is especially disturbing due to the toxicity and persistence of these products and their accumulation in the biosphere. Hence, a systematic detection and delimitation of highly polluted floodplains and linkages between pollution and high-flow stages would likely assist the improvement of land management and ease the design of mitigation or rehabilitation measures. Here we test how trees growing in different geomorphic positions along a fluvial system uptake metal during floods and how these uptakes can be documented “a posteriori”. To this end, we apply dendrogeochemical analyses to twenty Pinus pinaster Ait. trees growing on the banks of Odiel River (south-western Spain) as well as to five reference trees growing outside the river channel. In the field, trees were sampled with a large-diameter (1 cm) increment borer. In the lab, tree-ring series were dendrochronologically cross dated and separated into 5-yr blocks, so that wood blocks contained the dates of major floods. Then, Inductively Coupled Plasma Mass Spectrometry (ICPM) was employed to evaluate toxic metal concentrations in trees. Results point to clear correlations between the accumulation of toxic metals and the geomorphic position of trees within the fluvial network. We show that morphological units along a river exert control on toxic metal concentrations in trees, with uptake being much higher in trees located on meander cut banks than in trees growing on point-bar structures. Besides, we detect chemical signatures in trees located farthest away from the main river channel after the largest floods, but not in the aftermath of smaller events. We conclude that tree position is the single-most important determinant for metallic pollution in an environment controlled by fluvial processes, but also find that more studies are still needed to determine linkages with individual floods and interactions of metal uptake in roots via the water table in the river corridor.
<p>Anthropogenic activities such as mining are responsible for acid drainage and metal-enriched waters that in turn contaminate river ecosystem downstream due to the weathering of exposed minerals or tailing dam failures. The release of heavy metals is especially disturbing because of their high toxicity and long permanence. Detecting highly polluted areas and their links with high (low) water flow stages can contribute to a better land management of affected areas. Here, we test if trees growing in different geomorphic positions along a river record heavy metal uptake during past floods. To this end, we applied dendrochemical analysis to twenty-five <em>Pinus pinaster</em> Ait. growing on the banks of Odiel River flowing into the Atlantic Ocean located at in south-western Spain. In addition, five trees disconnected from the river channel were sampled as references values. For each tree, we extracted 1 cm-sized increment cores. After dating dendrochronologically, we isolated tree-ring sequences into 5-year blocks matching with the dates of major floods in the catchments. Samples were then analyzed using an Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Our results suggest coherence between tree locations and the amount of heavy metal accumulated in the tree over the last decades. Thus, we clearly show a control of river morphological units on the &#160;heavy metal concentrations in trees, being higher in those trees located on meander cut banks than in trees on point-bar sedimentary structures. We conclude that trees could be a natural proxy to trace chemical dispersion and pollution related to flood events in highly anthropogenic catchments.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.