propanone singlet excited state was detected on the reaction path to the metallaketene species. This metallacyclopropanone excited state species has a lifetime of less than 100 ps and a characteristic bridging carbonyl band at 1770 cm −1 . The tungsten ketene species was also detected but in contrast to the chromium system, this forms directly from a low-lying triplet excited state. The electrochemical release of CO showed a greater efficiency for the chromium complex when compared to the tungsten.
The efficient on/off switching of fluorescence from thienyl- and phenyl-substituted porphyrin-ferrocene dyads is achieved through redox control of excited-state electron-transfer quenching.
a b s t r a c t A highly selective dopamine sensor was fabricated by doping polypyrrole with a sulfonated -cyclodextrin. This composite material enabled the selective sensing of dopamine in the presence of a large excess of ascorbic acid and prevented the regeneration of dopamine through the homogeneous catalytic reaction of the ascorbate anion with the dopamine-o-quinone. A single redox wave, corresponding to the oxidation of dopamine, was observed in dopamine/ascorbate mixtures, giving a truly selective dopamine sensor. The limit of detection was measured as 3.2 × 10 −6 M for dopamine.
The influence of the thiophene ring on the ground and excited state properties of the porphyrin ring is investigated, when substituted at the meso-position. A series of mono-, di-, tri-, and tetra- meso-thien-2-yl porphyrins are studied and discussed with respect to the reference compounds zinc(II)-5,10,15,20-tetra(thien-2'-yl)porphyrin ( 1a) and zinc(II)-5,10,15,20-tetraphenylporphyrin (ZnTPP). The extended conjugated system zinc(II)-5-(5'-(5''-ethynyl-2''-thiophenecarboxaldehyde)thien-2'-yl)-10,15,20-triphenylporphyrin ( 4d) is also studied and shows enhanced charge transfer character due to the presence of the terminal aldehyde accepting group. A detailed analysis of ground and excited state UV-vis absorption, steady-state and time-resolved fluorescence, laser flash photolysis, and electrochemical data all point toward substantial electronic communication between the central Zn(II) porphyrin ring and the meso-thien-2-yl substituents, which is evident from excited state charge transfer character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.