Let [Formula: see text] denote the discriminant of a real quadratic field. For all bicyclic biquadratic fields [Formula: see text], having a [Formula: see text]-class group of type [Formula: see text], the possibilities for the isomorphism type of the Galois group [Formula: see text] of the second Hilbert [Formula: see text]-class field [Formula: see text] of [Formula: see text] are determined. For each coclass graph [Formula: see text], [Formula: see text], in the sense of Eick, Leedham-Green, Newman and O’Brien, the roots [Formula: see text] of even branches of exactly one coclass tree and, in the case of even coclass [Formula: see text], additionally their siblings of depth [Formula: see text] and defect [Formula: see text], turn out to be admissible. The principalization type [Formula: see text] of [Formula: see text]-classes of [Formula: see text] in its four unramified cyclic cubic extensions [Formula: see text] is given by [Formula: see text] for [Formula: see text], and by [Formula: see text] for [Formula: see text]. The theory is underpinned by an extensive numerical verification for all [Formula: see text] fields [Formula: see text] with values of [Formula: see text] in the range [Formula: see text], which supports the assumption that all admissible vertices [Formula: see text] will actually be realized as Galois groups [Formula: see text] for certain fields [Formula: see text], asymptotically.
Let G be a 3-class group of maximal class, and γ2(G) = [G,G] its derived group. Assume that the commutator factor group G ∕ γ2(G) is of type (3,3) and the transfers Vχ2(G) → γ2(G) and VH→ γ2(G) are trivial, where χ2(G) is the biggest subgroup of G such that [χ2(G), γ2(G)] ⊆ γ4(G), and, H is one of its maximal normals subgroups different to χ2(G). Then G is completely determined with the isomorphism class groups of maximal class defined by B.Nebelung in [24]. Moreover the group G is realised. At the end numerical examples illustrating the results are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.