The compositional dependence of thermo-physical properties of Si-Ti liquid alloy has been reassessed using different modeling equations at temperatures 2000 K, 2400 K and 2473 K. The thermodynamic and structural properties of the system have been computed in the frame work of quasi-lattice test. The extent of surface segregation and surface tension of the liquid mixture have been computed using Butler’s equations at afore mentioned temperatures. The results so obtained have been compared with the available literature database. Theoretical investigations shows that the compound forming tendency of the system gradually decreases at elevated temperatures and hence it shows ideal behaviours, as expected.
BIBECHANA 17 (2020)
Thermo-physical properties of Al-Mg alloys in molten state at 1073 K have been studied using thermodynamic modeling. Thermodynamic properties, such as free energy of mixing, heat of mixing, entropy of mixing, activities and structural properties, such as concentration fluctuation in long wavelength limit, Warren-Cowely short range order parameter have been studied at 1073 K, 1173 K, 1273 K and 1373 K on the basis of regular associated solution model. The surface properties such as surface concentrations and surface tension of the liquid alloys have been studied by using Butler's model. A consistent set of model parameters have also been obtained by using optimization procedure based on statistical thermodynamics. Our analysis reveals that Al-Mg alloy is moderately interacting and it shows ordering nature at 1073 K. The nature of the alloys changes from ordering to segregating as the temperature increases.
The thermodynamic, structural, surface and transport properties of In-Tl binary liquid alloy are studied on the basis of theoretical analysis using the regular solution model at different temperatures. The properties of the alloy at 723 K have been computed by estimating the best fit value of order energy parameter (ω) in the entire range of concentration to match their observed and theoretical values. The values of order energy parameter at different temperatures have been calculated using the value of order energy parameter at 723 K which played key role to study different properties of the alloy using optimization method. The theoretical analysis gives the positive energy parameter (ω), which is found to be temperature dependent.
The validity of simple statistical model or simple theory of mixing has been first established by explaining the experimental values of the thermodynamic and structural properties of Ni-Al melt at 1873 K. Secondly, the linear temperature dependence of ordering energy parameter has been assumed to extend the model for predicting the mixing behaviours of the melt at different temperatures in correlation with R-K polynomials. The surface tension of the system has been explained and predicted with the help of Renovated Butler model. Theoretical investigations correspond that alloy is found to be strongly interacting or hetero-coordinating at its melting temperature. This tendency, however, gradually decreases at higher temperatures. Being more specific, the system shows ideal behaviours with respect to mixing properties at elevated temperatures. BIBECHANA 16 (2018) 106-121
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.