Simple Summary: In pig nutrition, alternative and safe supplements are needed to enhance the pigs' health and welfare. Natural feed components, such as herbs and plant extracts, are of great importance in animal nutrition, and marine macroalgae can be considered as supplements positively influence animal health parameters. Seaweeds possess several bioactive molecules that are studied for their prebiotic, anti-microbial, antioxidant, anti-inflammatory and immunomodulatory effects. Seaweed benefits are related to their content of sulfated polysaccharides, phlorotannins, diterpenes, omega-3 polyunsaturated fatty acids, minerals and vitamins. This paper reviews the following biological functions of seaweeds and seaweed extracts in pig nutrition: prebiotics, anti-microbial, antioxidant, anti-inflammatory and immunomodulatory effects, promoting intestinal well-being and improving digestibility.Abstract: Seaweeds are macroalgae, with different sizes, colors and composition. They consist of brown algae, red algae and green algae, which all have a different chemical composition and bioactive molecule content. The polysaccharides, laminarin and fucoidan are commonly present in brown seaweeds, ulvans are found in green seaweeds and, red algae contain a large amount of carrageenans. These bioactive compounds may have several positive effects on health in livestock. In order to reduce the antimicrobials used in livestock, research has recently focused on finding natural and sustainable molecules that boost animal performance and health. The present study thus summarizes research on the dietary integration of seaweeds in swine. In particular the influence on growth performance, nutrients digestibility, prebiotic, antioxidant, anti-inflammatory, and immunomodulatory activities were considered. The review highlights that brown seaweeds seem to be a promising dietary intervention in pigs in order to boost the immune system, antioxidant status and gut health. Data on the use of green seaweeds as a dietary supplementation seems to be lacking at present and merit further investigation.(Bacillariophyceae), green algae (Chlorophyceae) and golden algae (Chrysophyceae) are the most abundant but blue-green algae (Cyanophyceae) are also defined as microalgae [2]. The bioactive molecules of microalgae are used as food and feed supplements [3].Seaweeds are marine organisms and comprise thousands of species, which are classified on the basis of their pigmentation: brown seaweeds (Phaeophyceae), red seaweeds (Rhodophyceae) and green seaweeds (Chlorophyceae).There are around 1800 species of brown seaweeds include, only 1% of which are recognized from freshwater and the size range varies from 20 m to 30 cm long. The brown color of these algae is related to the main content of carotenoid fucoxanthin, which masks β-carotene, violaxanthin, diatoxanthin, and chlorophyll. The main polysaccharides are laminarin, fucoidans and alginates, and the cell walls are composed of cellulose and alginic acid [4].Like brown seaweeds, red algae (about 6100 specie...
Mucus secreted onto the surface of the intestine forms a physical barrier to invading parasites so that a possible attachment of helminths to the surface is prevented and their expulsion by peristalsis facilitated. In mammals, intestinal parasites induce hyperplasia and hypertrophy of intestine goblet cells and provoke changes in the mucus composition. In fish, this topic has received less attention. In the present investigation, histochemical methods were employed to compose intestinal mucous cell numbers and their glycoconjugate composition were compared by uninfected brown trout Salmo trutta and in S. trutta parasitized with Cyathocephalus truncatus or Pomphorhynchus laevis. When P. laevis was present in the intestine of the brown trout, the total mucous cell number, and the number of mucous cells containing acid or mixed glycoconjugates were significantly enhanced. No significant change in the total mucous cell number was detected in the intestine of fish parasitized with C. truncatus in comparison with uninfected brown trout. A significant increase was observed in the number of both acid (especially sulphated) and mixed glycoconjugates containing mucous cells as well as a significant decrease in the number of neutral glycoconjugates containing mucous cells. When intestinal helminths were present, the thickness of the adherent mucous gel increased. In a limited number of other fish species, the occurrence of gill and intestinal parasites has been reported to increase the mucosal glycoconjugate secretions. Our study is the first quantitative report on the effects of intestinal helminths on the density of mucous cells and mucus composition in a fish species. KEY WORDS: Glycoconjugates · Mucus composition · Mucous cell number · Intestinal parasites · Brown troutResale or republication not permitted without written consent of the publisher
The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.