In a recent paper Kelly et al. (2015) [PICIN: A Particle-In-Cell solver for incompressible free surface flows with two-way fluid-solid coupling. SIAM Journal on Scientific Computing 37 (3), B403-B424.] detailed the PICIN full particle Particle-In-Cell (PIC) solver for incompressible free-surface flows. The model described in that paper employed a tailored version of the Distributed Lagrange Multiplier (DLM) method for the strong coupling of fluid-solid interaction. In this paper we propose an alternative strong fluid-solid coupling algorithm based on a modification to the cut cell methodology that is informed by the variational approach. The solid velocity flux/integral on the boundary is expressed purely in terms of pressure leading to a revised pressure Poisson equation that is discretised in a finite volume sense. This approach allows the PICIN model to simulate the motion of floating bodies of arbitrary configuration. 2D test cases involving floating bodies with one or more degrees of freedom (DoF) are used to validate the modified PICIN model. The results presented show that the modified PICIN model is able to both efficiently and robustly predict the motions of surface-piercing floating structures under either regular or extreme wave action.
A recent paper Kelly et al. (2015) [SIAM Journal on Scientific Computing 37 (3), B403-B424.] detailed a full particle Particle-In-Cell solver for incompressible free surface flows with two-way fluid-structure interaction called PICIN. In this paper, a 2D version of the method is adapted for simulating the flows encountered in the vicinity of coastal structures. Wave generation and absorption techniques within the hybrid Eulerian-Lagrangian framework used by PICIN are developed for this purpose. The PICIN model is validated against data from three benchmark experiments: i) wave shoaling over a submerged bar, ii) wave overtopping of a Low Crested Structure (LCS) and iii) dam-break induced overtopping of a containment dike. A realistic engineering scenario is also presented that demonstrates the modelling of two-way fluidstructure interaction. The validation study demonstrates that the PICIN model is able to simulate the significant flow processes occurring during wave propagation and transformation, wave impact, overtopping and two-way fluid structure interaction, using relatively little computational resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.