Infrared divergences in scattering amplitudes arise when a loop momentum becomes collinear with a massless external momentum p. In gauge theories, it is known that the L-loop logarithm of a planar amplitude has much softer infrared singularities than the L-loop amplitude itself. We argue that planar amplitudes in N = 4 super-Yang-Mills theory enjoy softer than expected behavior as p already at the level of the integrand. Moreover, we conjecture that the four-point integrand can be uniquely determined, to any loop-order, by imposing the correct soft-behavior of the logarithm together with dual conformal invariance and dihedral symmetry. We use these simple criteria to determine explicit formulae for the four-point integrand through seven-loops, finding perfect agreement with previously known results through five-loops. As an input to this calculation, we enumerate all four-point dual conformally invariant (DCI) integrands through seven-loops, an analysis which is aided by several graph-theoretic theorems we prove about general DCI integrands at arbitrary looporder. The six-and seven-loop amplitudes receive non-zero contributions from 229 and 1873 individual DCI diagrams respectively. PDF and Mathematica files with all of our results are provided at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.