Managing quality of service (QoS) is an important network operation, especially in hybrid wired and wireless multimedia networks. In this study, a two-stage approach to intelligently manage QoS for multimedia traffic was developed. Voice over Internet protocol (VoIP) was included in the study as an example of a typical multimedia application. Initially an adaptive statistical sampling technique was employed. It determined the traffic's statistics and used them in a fuzzy inference system to determine the optimum interval between every two consecutive sections of the traffic sampled. In the second stage, a fuzzy c-means (FCM) clustering was used to pre-process QoS parameters (delay, jitter and packet loss ratio) obtained from the devised sampling scheme. A multilayer perceptron (MLP) neural network then used the information from FCM to assess the QoS provided for VoIP. It was shown that the developed adaptive statistical sampling represents the traffic more correctly than the systematic, stratified and random non-adaptive sampling methods. Also, the combination of statistical sampling followed by FCM and MLP accurately indicated the QoS for VoIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.