DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green’s functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.
Anatase TiO2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron–hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier–Mott and Frenkel regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. The universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.
The time-dependent density functional based tight-binding (TD-DFTB) approach is generalized to account for fractional occupations. In addition, an on-site correction leads to marked qualitative and quantitative improvements over the original method. Especially, the known failure of TD-DFTB for the description of σ → π* and n → π* excitations is overcome. Benchmark calculations on a large set of organic molecules also indicate a better description of triplet states. The accuracy of the revised TD-DFTB method is found to be similar to first principles TD-DFT calculations at a highly reduced computational cost. As a side issue, we also discuss the generalization of the TD-DFTB method to spin-polarized systems. In contrast to an earlier study, we obtain a formalism that is fully consistent with the use of local exchange-correlation functionals in the ground state DFTB method.
A combined experimental and computational study of the photocatalytic activity of titanium dioxide (TiO 2 ) for the degradation of nitrogen(II) oxide (NO) and acetaldehyde is reported. We employ five different TiO 2 photocatalysts including pure anatase and rutile samples. The experimental photonic efficiencies indicate that, under visible irradiation, the samples containing pure TiO 2 are active for the decomposition of NO but inactive for the acetaldehyde degradation. This is in accordance with our theoretical predictions, which reveal the presence of weak absorption bands in the visible region of the absorption spectra of the TiO 2 -NO complexes. We demonstrate that these bands originate from charge-transfer excitations between the pollutant and the substrate. Although a ligand-to-metal charge-transfer process is expected to predominate, we find a competing mechanism in which one electron is promoted from the valence band of the semiconductor to the virtual π * states of NO. Both experimental and theoretical results show an enhanced vis-activity of anatase TiO 2 compared to rutile.We observe from the theoretical simulations the formation of reactive monocoordinated oxygen atoms at the anatase (001) surface for moderately low concentrations of the contaminant.Based on these findings, a new mechanism for the photo-oxidation of NO is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.