Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA,LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion ofLncMyoDin muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation.LncMyoDexclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss ofLncMyoDprevents the establishment of a permissive chromatin environment at myogenic E-box–containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion ofLncMyoDstrongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows thatLncMyoDassociates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.