This paper presents a 3D software tool for the design and optimization of cathodic protection systems for submerged structures. It provides the corrosion engineer with a powerful tool for managing operational costs, significantly reducing expensive commissioning surveys and costly repairs, adding major value to the cathodic protection business.The software is entirely CAD integrated such that it can deal with 3D CP-configurations of arbitrary complexity with parameterisation of all geometrical dimensions. The CP model is based on the potential model describing the ohmic drop in the electrolyte (soil, water) with non-linear boundary conditions that model the electrochemical reactions at anodes and cathodes.In this paper, it is explained why the Finite Element Method is used to solve the problem. As an example the protection level of a hypothetical marine vessel using impressed current cathodic protection (ICCP) systems will be investigated. In addition, the underwater electric potential (UEP) of the vessel will be calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.