Soil tillage can affect the formation and stability of soil aggregates. The disruption of soil structure weakens soil aggregates to be susceptible to the external forces of water, wind, and traffic instantaneously, and over time. The choice of tillage system or land management changes the soil physical condition and soil organic matter content, which is an essential factor in building soil aggregates. This study was conducted to investigate the effects of different tillage systems on the rate of decay of different sizes of soil aggregate fractions and other associated properties over time as subjected to a continuous wetting process. This research was conducted on a long-term tillage study, established in 2002 at the Iowa State University Agronomy Research Farm near Ames, Iowa. The soil association in this study is Clarion-Nicollet-Webster (Clarion [fine-loamy, mixed, mesic, Typic Hapluduolls], Nicollet [fine-loamy, mixed, mesic, Aquic Hapluduolls], and Webster [fine-loam, mixed, mesic, Typic Endoaquolls]). The experimental design was a randomized complete block design with four replications. Main plot treatments were five tillage systems: moldboard-plow, chisel-plow, deep-rip, strip-till, and no-till. The cropping system was corn (Zea mays L.)-soybean (Glycine max L.) rotation. Wet aggregate stability was measured using the Wet Sieving Apparatus (Eijkelkamp, Agrisearch Equipment. Art no. 08.13). Soil organic carbon (SOC) and soil total nitrogen (N) were analyzed by dry combustion using CHN Analyzer (TruSpec CHN Version 2.5x). Results show no-till with the highest carbon (C) content and the highest macro-and microaggregate stability over time. The findings also show a strong relationship between the increase in SOC content and the stability of macro-and microaggregate under continuous wetting process. Furthermore, the findings suggest that aggregate stability and moisture content are highly correlated with SOC content, and the rate of decay of both aggregate sizes (macro and micro) is highly influenced by the intensity of tillage. The implication of this research is the importance of no-till not only in increasing the stability of micro-and macroaggregates and SOC storage, but also in its effect on increasing the stability of all aggregate fractions in continuous wet conditions for extended periods of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.