Optically-active spin defects hosted in hexagonal boron nitride (hBN) are promising candidates for the development of a two-dimensional (2D) quantum sensing unit. Here, we demonstrate quantitative magnetic imaging with hBN flakes doped with negatively-charged boron-vacancy (V − B ) centers through neutron irradiation. As a proof-of-concept, we image the magnetic field produced by CrTe2, a van der Waals ferromagnet with a Curie temperature slightly above 300 K. Compared to other quantum sensors embedded in 3D materials, the advantages of the hBN-based magnetic sensor described in this work are its ease of use, high flexibility and, more importantly, its ability to be placed in close proximity to a target sample. Such a sensing unit will likely find numerous applications in 2D materials research by offering a simple way to probe the physics of van der Waals heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.