The mechanisms by which the p53 tumour suppressor protein would, in vivo, co-ordinate the adaptive response to genotoxic stress is poorly understood. p53 has been shown to transactivate several genes that could be involved in two main cellular responses, growth arrest and apoptosis. To get further insight into the tissuespeci®c regulation of p53 transcriptional activity, we performed an extensive study looking at the expression of four well characterized p53-responsive genes, before and after g-irradiation in p53 wild-type (p53+/+) and p53-de®cient (p537/7) mice. The waf1, bax, fas and mdm2 genes were chosen for their dierent potential roles in the cellular response to stress. Our data demonstrate the strict p53-dependence of mRNA upregulation for bax, fas and mdm2 in irradiated tissues and con®rm such ®ndings for waf1. They further highlight complex levels of regulatory mechanisms that could lead, in vivo, to selective transcriptional activation of genes by p53. In addition, our results provide arguments for the involvement of p53 in the basal mRNA expression of the four genes in some organs. Finally, in situ expression of Bax and p21Waf-1 protein suggests, at least in lymphoid organs, a direct correlation between selective p53-target gene expression and a particular response of a cell to ionising radiation.
Trichothiodistrophy (TTD), xeroderma pigmentosum (XP), and Cockayne's syndrome (CS) are three distinct human diseases with sensitivity to ultraviolet (UV) radiation affected by mutations in genes involved in nucleotide excision repair (NER). Among the many responses of human cells to UV irradiation, both nuclear accumulation of p53, a tumor suppressor protein, and alterations in cell-cycle checkpoints play crucial roles. The purpose of this study was to define the signals transmitted after UV-C-induced DNA damage, which activates p53 accumulation in TTD/XP-D fibroblasts, and compare this with XP-D cell lines that carry different mutations in the same gene, XPD. Our results showed that p53 was rapidly induced in the nuclei of TTD/XP-D and XP-D fibroblasts in a dose-dependent manner after UV-C irradiation, as seen in XP-A and CS-A fibroblasts, much lower doses being required for the protein accumulation than in normal human fibroblasts, XP variant cells, and XP-C cells. The kinetics of accumulation of p53 and two effector proteins involved in cell-cycle arrest, WAF1 and GADD45, were also directly related to the repair potential of the cells, as in normal human fibroblasts their levels declined after 24 h, the time required for repair of UV-induced lesions, whereas NER-deficient TTD/XP-D cells showed p53, WAF1, and GADD45 accumulation for over 72 h after irradiation. Our results indicate that p53 accumulation followed by transcriptional activation of genes implicated in growth arrest is triggered in TTD/XP-D cells by the persistence of cyclobutane pyrimidine dimers, which are known to block transcription, on the transcribed strands of active genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.