The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Summary. The issue of setting the values of various parameters of an evolutionary algorithm is crucial for good performance. In this paper we discuss how to do this, beginning with the issue of whether these values are best set in advance or are best changed during evolution. We provide a classification of different approaches based on a number of complementary features, and pay special attention to setting parameters on-the-fly. This has the potential of adjusting the algorithm to the problem while solving the problem. This paper is intended to present a survey rather than a set of prescriptive details for implementing an EA for a particular type of problem. For this reason we have chosen to interleave a number of examples throughout the text. Thus we hope to both clarify the points we wish to raise as we present them, and also to give the reader a feel for some of the many possibilities available for controlling different parameters.
Summary. The issue of setting the values of various parameters of an evolutionary algorithm is crucial for good performance. In this paper we discuss how to do this, beginning with the issue of whether these values are best set in advance or are best changed during evolution. We provide a classification of different approaches based on a number of complementary features, and pay special attention to setting parameters on-the-fly. This has the potential of adjusting the algorithm to the problem while solving the problem. This paper is intended to present a survey rather than a set of prescriptive details for implementing an EA for a particular type of problem. For this reason we have chosen to interleave a number of examples throughout the text. Thus we hope to both clarify the points we wish to raise as we present them, and also to give the reader a feel for some of the many possibilities available for controlling different parameters.
We address a fundamental issue of collective motion of aerial robots: how to ensure that large flocks of autonomous drones seamlessly navigate in confined spaces. The numerous existing flocking models are rarely tested on actual hardware because they typically neglect some crucial aspects of multirobot systems. Constrained motion and communication capabilities, delays, perturbations, or the presence of barriers should be modeled and treated explicitly because they have large effects on collective behavior during the cooperation of real agents. Handling these issues properly results in additional model complexity and a natural increase in the number of tunable parameters, which calls for appropriate optimization methods to be coupled tightly to model development. In this paper, we propose such a flocking model for real drones incorporating an evolutionary optimization framework with carefully chosen order parameters and fitness functions. We numerically demonstrated that the induced swarm behavior remained stable under realistic conditions for large flock sizes and notably for large velocities. We showed that coherent and realistic collective motion patterns persisted even around perturbing obstacles. Furthermore, we validated our model on real hardware, carrying out field experiments with a self-organized swarm of 30 drones. This is the largest of such aerial outdoor systems without central control reported to date exhibiting flocking with collective collision and object avoidance. The results confirmed the adequacy of our approach. Successfully controlling dozens of quadcopters will enable substantially more efficient task management in various contexts involving drones.
In this paper we present a conceptual framework for parameter tuning, provide a survey of tuning methods, and discuss related methodological issues. The framework is based on a three-tier hierarchy of a problem, an evolutionary algorithm (EA), and a tuner. Furthermore, we distinguish problem instances, parameters, and EA performance measures as major factors, and discuss how tuning can be directed to algorithm performance and/or robustness. For the survey part we establish different taxonomies to categorize tuning methods and review existing work. Finally, we elaborate on how tuning can improve methodology by facilitating well-funded experimental comparisons and algorithm analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.