With advances in microscopy and computer science, the technique of digitally reconstructing, modeling, and quantifying microscopic anatomies has become central to many fields of biological research. MBF Bioscience has chosen to openly document their digital reconstruction file format, the Neuromorphological File Specification, available at www.mbfbioscience.com/filespecification (Angstman et al., 2020). The format, created and maintained by MBF Bioscience, is broadly utilized by the neuroscience community. The data format’s structure and capabilities have evolved since its inception, with modifications made to keep pace with advancements in microscopy and the scientific questions raised by worldwide experts in the field. More recent modifications to the neuromorphological file format ensure it abides by the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles promoted by the International Neuroinformatics Coordinating Facility (INCF; Wilkinson et al., Scientific Data, 3, 160018,, 2016). The incorporated metadata make it easy to identify and repurpose these data types for downstream applications and investigation. This publication describes key elements of the file format and details their relevant structural advantages in an effort to encourage the reuse of these rich data files for alternative analysis or reproduction of derived conclusions.
With advances in microscopy and computer science, the technique of digitally reconstructing, modeling, and quantifying microscopic anatomies has become central to many fields of biological research. MBF Bioscience has chosen to openly document their digital reconstruction file format, Neuromorphological File Specification (4.0), available at www.mbfbioscience.com/filespecification (Angstman et al. 2020). One of such technologies, the format created and maintained by MBF Bioscience is broadly utilized by the neuroscience community. The data format's structure and capabilities have evolved since its inception, with modifications made to keep pace with advancements in microscopy and the scientific questions raised by worldwide experts in the field. More recent modifications to the neuromorphological data format ensure it abides by the Findable, Accessible, Interoperable, and Reusable (FAIR) data standards promoted by the International Neuroinformatics Coordinating Facility (INCF; Wilkinson et al. 2016). The incorporated metadata make it easy to identify and repurpose these data types for downstream application and investigation. This publication describes key elements of the file format and details their relevant structural advantages in an effort to encourage the reuse of these rich data files for alternative analysis or reproduction of derived conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.