Abstract-The functional interaction, or "cross-talk," between estrogen receptor (ER) and the proinflammatory transcription factor nuclear factor (NF)-B demonstrated in vitro has been suggested to play a role in estrogen prevention of cardiovascular disease. Here, we demonstrate that this reciprocal cross-talk occurs in vivo. Ovariectomized C57BL/6 mice fed an atherogenic diet had increased hepatic levels of active NF-B and numerous inflammatory genes, including MHC invariant chain (Ii), vascular cell adhesion molecule-1, tumor necrosis factor-␣, and RANTES. Treatment with 17␣-ethinylestradiol (EE) strongly blocked induction of these genes but had no effect on their basal expression levels. ER was required for this activity, because the antagonist ICI 182,780 completely blocked the inhibitory activity of EE. Gene activation by EE was not required for inhibition of inflammatory gene expression, because both the phytoestrogen genistein and low doses of EE were effective in blocking inflammatory gene induction without inducing marker genes such as intestinal trefoil factor (ITF) or myo-inositol-1-phosphate synthase (IPS). The in vivo transcriptional interference was reciprocal, with EE induction of ITF and IPS greatly reduced in animals fed the atherogenic diet versus chow-fed controls. This interference was specific to the liver, because diet had no effect on uterine weight increases produced by EE. Transfection experiments confirmed that the extent of inhibition of ER-mediated transcription by inflammatory stimuli correlated with the extent of NF-B activation. These results suggest that the cross-talk between ER and NF-B does occur in vivo and may indeed contribute significantly to the cardioprotective effects of estrogen.
A well-established model of bowel inflammation is the HLA-B27 transgenic rat that exhibits a spontaneous disease phenotype resulting in chronic diarrhea caused by immune cell activation. Estrogens have previously been shown to modulate the immune system, and both estrogen receptors (ERalpha and ERbeta) are present in the intestine and cells of the immune system. Therefore, the ability of estrogen to ameliorate disease progression in the HLA-B27 transgenic rat was determined. HLA-B27 transgenic rats with chronic diarrhea were treated with 17alpha-ethynyl-17beta-estradiol (EE) for 5 days. EE treatment dramatically improved stool scores after only 3 days. Histological scores of the degree of ulceration, inflammatory cell infiltration, fibrosis, and lesion depth of the colon were also improved by EE treatment. Because neutrophil infiltration into the colon is involved in the development and propagation of disease, myeloperoxidase (MPO) activity was measured. MPO levels were reduced by 80% by EE treatment. Cotreatment with the pure ER antagonist ICI-182780 (ICI) blocked the effects of EE on stool character, MPO activity, and histology scores, strongly suggesting that the activity of EE is mediated through ER. Mast cell proteases can promote neutrophil infiltration, and gene expression analysis demonstrated that mast cell protease 1, 3, and 4 mRNA were all decreased in colons from estrogen-treated rats. In addition, a direct effect of estrogen on bone marrow-derived mast cell activity was demonstrated, suggesting that ER-mediated inactivation of mast cells may contribute to the improvement in the clinical sign and histological scores in this model.
Pathway-selective ligands for the estrogen receptor (ER) inhibit NF-kappaB-mediated inflammatory gene expression causing a reduction of cytokines, chemokines, adhesion molecules, and inflammatory enzymes. SAR development of a series of 4-(indazol-3-yl)phenols has led to the identification of WAY-169916 an orally active nonsteroidal ligand with the potential use in the treatment of rheumatoid arthritis without the classical proliferative effects associated with estrogens.
ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.