The Rational Function Model (RFM) has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR) image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC) for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10−3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs) are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.
Nowadays by high resolution SAR imaging systems as Radarsat-2, TerraSAR-X and COSMO-skyMed, three-dimensional terrain data extraction using SAR images is growing. InSAR and Radargrammetry are two most common approaches for removing 3D object coordinate from SAR images. Research has shown that extraction of terrain elevation data using satellite repeat pass interferometry SAR technique due to atmospheric factors and the lack of coherence between the images in areas with dense vegetation cover is a problematic. So the use of Radargrammetry technique can be effective. Generally height derived method by Radargrammetry consists of two stages: Images matching and space intersection. In this paper we propose a multi-stage algorithm founded on the combination of feature based and area based image matching. Then the RPCs that calculate for each images use for extracting 3D coordinate in matched points. At the end, the coordinates calculating that compare with coordinates extracted from 1 meters DEM. The results show root mean square errors for 360 points are 3.09 meters. We use a pair of spotlight TerraSAR-X images from JAM (IRAN) in this article.
ABSTRACT:Stereo radargrammetry is a mature technique for deriving height information from SAR image pairs. Generally height derived method by Radargrammetry consists of two stages: Images matching and space intersection. In this paper we propose a multi-step image matching algorithm founded on feature based matching. In this multi step algorithm, a SAR image is firstly filtered by a speckle suppression algorithm. a SIFT (Scale invariant feature transform) is used to extract feature points. Then we use non parametric Transformation as discriptor for the points extracted. Matching is sometimes more efficient when operating on image signals that have been transformed in some way, rather than operating on the pure intensity values themselves; In this article we use a pair of spotlight long base line TerraSAR-X images from JAM (IRAN). In a part with 700 × 700 pixels of these images 90 points are matched with using Ranklet algorithm. The mean absolute error of the corresponding points is 0.9 pixel. This match points number is 49 points with using multi resolution Census. The result shows that our proposed multi step image matching is superior to the Most FBM methods in terms of accuracy and number of matched points.
ABSTRACT:Automatic extraction of building roofs, street and vegetation are a prerequisite for many GIS (Geographic Information System) applications, such as urban planning and 3D building reconstruction. Nowadays with advances in image processing and image matching technique by using feature base and template base image matching technique together dense point clouds are available. Point clouds classification is an important step in automatic features extraction. Therefore, in this study, the classification of point clouds based on features color and shape are implemented. We use two images by proper overlap getting by Ultracam-x camera in this study. The images are from Yasouj in IRAN. It is semiurban area by building with different height. Our goal is classification buildings and vegetation in these points. In this article, an algorithm is developed based on the color characteristics of the point's cloud, using an appropriate DEM (Digital Elevation Model) and points clustering method. So that, firstly, trees and high vegetation are classified by using the point's color characteristics and vegetation index. Then, bare earth DEM is used to separate ground and non-ground points. Non-ground points are then divided into clusters based on height and local neighborhood. One or more clusters are initialized based on the maximum height of the points and then each cluster is extended by applying height and neighborhood constraints. Finally, planar roof segments are extracted from each cluster of points following a region-growing technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.