The aim of this study is to develop a two-scale tool allowing the detailed analysis of the behavior of fiber-reinforced magneto-electro-elastic composite plates. The work is divided into two major sections. The first one deals with the homogenization of the properties of each layer based on the Mori-Tanaka mean field approach where all needed effective coefficients of each layer are determined. In the second one and in order to perform the analysis of the behavior of the obtained magneto-electro-elastic multilayered plate, the Stroh formalism is used. It allows to predict the effective behavior of such plates and the spatial distribution of the local fields along the layers.
This work concerns heterogeneous multiphase materials which may exhibit omnidirectional full or partial cocontinuity of several or all phases. The estimate of their effective (mechanical or physical) properties is not yet well handled as compared to those for well-defined aggregate or reinforced-matrix structures, especially in the context of homogenization methods. We propose in this framework a modeling scheme which aims at accounting for such phase cocontinuity features. In the mechanical application field, the modeling validity restricts to elastic properties of unloaded materials or in load situations as far as bending and torsion effects of possibly strut-like phase parts are not essential. For other physical properties (dielectric, magnetic, etc.), the modeling applications concern those for which homogenization approaches are relevant. The modeling is based on a material's morphology description in terms of a generalization of so-called "fiber systems" that were introduced in early literature reports. Using parameters that describe the clustering characteristics of the individual phases and of their assemblage, we have considered these fiber systems both within a layer-based approach of the material structure and within an aggregate-like one. By these two routes, we have obtained two estimate forms that differ only slightly in definition. The presentation uses the elasticity formalism, in simple cases of isotropic mixtures of two-phase materials with isotropic phase behavior but the modeling extends to n-phase anisotropic materials as established separately. Our estimates are compared with basic variational bounds and homogenization estimates, with some literature data and with homogenization results obtained with the fast Fourier transform approach on numerical structures. All data are matched with different parameter sets corresponding to different types of phase organization. The two estimates remain nearly equal for all of the examined structures regardless of phase contrast and with only slight differences consistent with their definition difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.