Faecal samples from 76 diarrhoeic calves belonging to 36 farms located in the Pampas plain, Argentina, were examined for Shiga toxin-producing Escherichia coli (STEC). A total of 15 STEC strains were isolated from 12 (15.8%) calves which came from six different farms. All stx positive strains assayed by PCR were also positives in the Vero cell cytotoxicity test. The majority (60.0%) of the STEC strains carried the stx(1) gene. Twelve (80.0%) of the STEC isolates which belonged to serotypes O5:H- (n = 4), O26:H11 (n = 4), O26:H- (n = 1), O111:H- (n = 2), and O123:H38 (n = 1) were also enterohaemolysin (EHly) positive and carried the gene encoding for intimin (eae). All the stx positive strains were negative for the bfpA gene. Localized adherence to HEp-2 cells were observed in 83.3% of the eae+ STEC strains. STEC belonging to serotype O5:H- showed atypical biochemical properties, including urease production. Urease was also produced by two strains belonging to serotypes O153:H? and non-typeable, respectively. Resistance to three or more antibiotics was observed in 12 (80.0%) of the STEC isolates. Most of the serotypes of STEC recovered in this survey carried virulence traits that are associated with increased human and bovine pathogenicity. The present study shows that highly virulent STEC strains are being shed by diarrhoeic calves from farms located in a high incidence area of human STEC infections.
Non-enterotoxin (CPE)-producing Clostridium perfringens type A has been associated with enteritis in calves. Recent evidence has suggested that a novel toxin, named beta2 (CPB2), is implicated in the pathogenesis of this disease, although there is little evidence supporting this. In the current study, the role of C. perfringens type A in an outbreak of enteritis in calves was studied. Two 20-day-old dairy calves exhibiting apathy and reluctance to eat, with paresis of the anterior limbs, were euthanized for postmortem examination. Gross and histological changes compatible with acute enteritis, rumenitis, meningitis, and pneumonia were seen in both calves. Clostridium perfringens type A non-CPE, non-CPB2 was isolated from the abomasum and the small intestine. Escherichia coli ONTH8 (with cdtBIII and f17 virulence genes detected by polymerase chain reaction) was also isolated from the brain, abomasum, and intestine from both calves. All the samples were negative for Salmonella spp. When the C. perfringens strain was inoculated into bovine ligated small and large intestinal loops, cell detachment, erosion, and hemorrhage of the lamina propria were observed, predominantly in the small intestine. The results suggest that non-CPE, non-CPB2 C. perfringens type A is able to induce pathologic changes in the intestine of calves, probably enhanced by other pathogens, such as some pathogenic E. coli strains.
Forty-four of a flock of 117 angora goats in the Rio Negro province of Argentina died within four days. Most of the animals died shortly after the onset of clinical signs, but in a few the clinical course lasted for several days. Post mortem the small and large intestines were filled with watery contents, blood and fibrin clots, and there were numerous ulcers on the mucosa. Small areas of malacia were observed histologically in the brain. Clostridium perfringens type D in pure culture was isolated from the kidneys and gut contents of the affected animals. Epsilon toxin was identified by the mouse seroneutralisation test in the supernatant solution from cultures of these isolates and in the intestinal contents of the affected animals. Heavy infestations with coccidia, nutritional and environmental stress, and an anthelmintic overdose were possible predisposing factors for the outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.