Forty-eight Pelibuey×Katahdin male intact lambs (23.87±2.84 kg) were used in an 84-d feeding trial, with six pens per treatment in a 2×2 factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME) and two dietary protein levels (17.5% and 14.5%) on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i) High protein-high energy (HP-HE); ii) High protein-low energy (HP-LE); iii) Low protein-high energy (LP-HE), and iv) Low protein-low energy (LP-LE). With a high-energy level, dry matter intake (DMI) values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG), but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE) ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p<0.03) between energy and protein level for kidney-pelvic and heart fat (KPH), KPH was higher in lambs fed high energy and high protein diet but not in high energy and low protein diet. The KPH was increased (20.2%, p = 0.01) in high-energy diets, while fat thickness was increased (21.7%, p = 0.02) in high-protein diets. Therefore, it is concluded that dietary energy levels play a more important role in feed efficiency than protein levels in finishing lambs with a high-energy diet (>2.80 Mcal/kg ME). Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.
Twenty Pelibuey×Katahdin ewes (35±2.3 kg) were used to determine the effects of the consumption of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on growth performance, dietary energetics, visceral mass, and ruminal epithelial health in heat-stressed ewes fed with a high-energy corn-based diet. The basal diet (13.9% crude protein and 2.09 Mcal of net energy [NE] of maintenance/kg of dry matter) contained 49.7% starch and 15.3% neutral detergent fiber. Source of QBA+PA was Sangrovit RS (SANG) which contains 3 g of quaternary benzophenathridine and protopine alkaloids per kg of product. Treatments consisted of a daily consumption of 0 or 0.5 g SANG/ewe. Ewes were grouped by weight and assigned to 10 pens (5 pens/treatment), with two ewes per pen. The experimental period lasted 70 days. The mean temperature humidity index during the course of this experiment was 81.7±1.0 (severe heat stress). There were no treatment effects on water intake. Dry matter intake was not affected (p = 0.70) by treatments, but the group fed SANG had a numerically (11.2%) higher gain in comparison to the control group, SANG improved gain efficiency (8.3%, p = 0.04), dietary NE (5.2%, p<0.01) and the observed-to-expected NE (5.9%, p<0.01). Supplemental SANG did not affect (p≥0.12) carcass characteristics, chemical composition of shoulder, and organ weights (g/kg empty body weight) of stomach complex, intestines, and heart/lung. Supplemental SANG decreased liver weight (10.3%, p = 0.02) and increased visceral fat (16.9%, p = 0.02). Rumen epithelium of ewes fed SANG had lower scores for cellular dropsical degeneration (2.08 vs 2.34, p = 0.02), parakeratosis (1.30 vs 1.82, p = 0.03) and neutrophil infiltration (2.08 vs 2.86, p = 0.05) than controls. It is concluded that SANG supplementation helped ameliorate the negative effects of severe heat on growth performance of feedlot ewes fed high-energy corn-based diets. Improvement in energetic efficiency may have been mediated, in part, by anti-inflammatory effects of supplemental SANG and corresponding enhancement of nutrient uptake.
Forty Pelibuey × Kathdin lambs (35.5 ± 0.4 kg) were used in a 56-day feeding experiment to assess the effects of feeding different levels of chromium-enriched live yeast (Cr-YC) on growth performance, dietary energetics, carcass traits and visceral organ mass. The Cr-YC source contained 5.5 × 109 colony forming units (CFU) and 0.40 mg of Cr per gram. Treatments consisted of a dry rolled corn-based finishing diet supplemented with 0, 1, 2 or 3 g Cr-YC/lamb.day. Total daily dosages were: 5.5 × 109 CFU and 0.4 mg; 1.1 × 1010 CFU and 0.8 mg Cr, and 1.65 × 1010 CFU and 1.2 mg Cr for supplementation levels of 1, 2 or 3 g Cr-YC/lamb.day, respectively. There were no treatments effects on dry matter intake. As the level of Cr-YC supplementation increased, average daily gain, gain to feed and dietary net energy were linearly increased, and observed/expected dry matter intake was linearly decreased. Chromium-enriched live yeast supplementation increased empty bodyweight (EBW), gastrointestinal fill and full viscera weight, but did not influence organ weights as a proportion of EBW (g/kg EBW). Cr-YC level did not affect carcass length, backfat thickness, kidney, pelvic and heart fat or body wall thickness, but increased hot carcass weight and longissimus muscle area. In general, treatment effects on percentage yield of wholesale cuts (tissue weight as a percentage of cold carcass weight) were small. However, Cr-YC decreased percentage flank. Chromium-enriched yeast supplementation enhances growth rate, longissimus muscle area, and dietary energetic efficiency in finishing feedlot lambs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.