Based on field observations and interviews with controllers at BOS and EWR, we identify the closure of local departure fixes as the most severe class of airport departure restrictions. A set of simple queueing dynamics and "traffic rules" are developed to model departure traffic under such restrictions. The validity of the proposed model is tested via Monte Carlo simulation against 10 hours of actual operations data collected during a case-study at EWR on June 29,2000. In general, the model successfully reproduces the aggregate departure congestion. An analysis of the average error over 40 simulation runs indicates that flow-rate restrictions also significantly impact departure traffic; work is underway to capture these effects. Several applications and "what-if'' scenarios are discussed for future evaluation using the calibrated model. grams to congested airports). Note that both types of restrictions have an effective cutoff threshold, above which traffic is stopped completely. Restrictions can also be categorized by spatial scope: This paper focuses on successfully modeling the most significant ("first-order") effects of downstream restrictions, where the relative severity is measured in terms of overall impact on aggregate metrics such as airport throughput, departure congestion, and average taxi-out delay.
A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulationbased tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.