Optical fibers have become ubiquitous tools for the creation, propagation, manipulation, and detection of light. However, while the intensity of light propagating through the fiber can increase or decrease along the length through amplification or attenuation, respectively, the properties of the fiber itself generally do not, thus removing an opportunity to further control the behavior of light and performance of fiber-based devices. Shown here are optical fibers that exhibit significant changes in their longitudinal optical properties, specifically a tailored longitudinal numerical aperture change of about 12% over less than 20 meters of length. This is about 1900 times greater than previously reported. The Brillouin gain coefficient was found to decrease by over 6 dB relative to a standard commercial single mode fiber. Next generation analogs are expected to exhibit more than a 10 dB reduction in SBS gain using larger, yet still reasonably manufacturable gradients over practical lengths.
Described herein, for the first time to the best of our knowledge, are optical fibers possessing significant compositional gradations along their length due to longitudinal control of the core glass composition. More specifically, MCVD-derived germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55 weight percent GeO 2 per meter. These gradients are about 1900 times greater than previously reported for fibers possessing longitudinal changes in composition. The refractive index difference is shown to change by about 0.001, representing a numerical aperture change of about 10 %, over a fiber length of less than 20 m. The lowest attenuation measured from the present longitudinally-graded fiber (LGF) was 82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic process-induced factors and could be reduced with further optimization. The stimulated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase in the spectral width, and thus reduction in Brillouin gain, relative to a standard commercial single mode fiber, over a fiber length of only 17 m. Fibers with longitudinally uniform (i.e., not gradient) refractive index profiles but differing chemical compositions among various core layers were also fabricated to determine acoustic effects of the core slug method. The refractive index of the resulting preform varies by about ± 0.00013 from the average. Upon core drilling, it was found that the core slugs had been drilled off-center from the parent preform, First, I would like to thank Dr. John Ballato for giving me the opportunity to work in his group at the Center for Optical Materials Science and Engineering Technologies (COMSET) at Clemson University. I would also like to acknowledge the invaluable assistance of the staff at COM-SET and the Advanced Materials Research Laboratory, namely Andrew James-who first hired me as an undergraduate research assistant-and Dale Edmonson for their help in fabricating my preforms and teaching me how to use the MCVD lathe. Dr.
Described herein, for the first time to the best of our knowledge, are optical fibers possessing significant compositional gradations along their length due to longitudinal control of the core glass composition. More specifically, MCVD-derived germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55 weight percent GeO 2 per meter. These gradients are about 1900 times greater than previously reported for fibers possessing longitudinal changes in composition. The refractive index difference is shown to change by about 0.001, representing a numerical aperture change of about 10 %, over a fiber length of less than 20 m. The lowest attenuation measured from the present longitudinally-graded fiber (LGF) was 82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic process-induced factors and could be reduced with further optimization. The stimulated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase in the spectral width, and thus reduction in Brillouin gain, relative to a standard commercial single mode fiber, over a fiber length of only 17 m. Fibers with longitudinally uniform (i.e., not gradient) refractive index profiles but differing chemical compositions among various core layers were also fabricated to determine acoustic effects of the core slug method. The refractive index of the resulting preform varies by about ± 0.00013 from the average. Upon core drilling, it was found that the core slugs had been drilled off-center from the parent preform, First, I would like to thank Dr. John Ballato for giving me the opportunity to work in his group at the Center for Optical Materials Science and Engineering Technologies (COMSET) at Clemson University. I would also like to acknowledge the invaluable assistance of the staff at COM-SET and the Advanced Materials Research Laboratory, namely Andrew James-who first hired me as an undergraduate research assistant-and Dale Edmonson for their help in fabricating my preforms and teaching me how to use the MCVD lathe. Dr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.