The microstructure and shape memory characteristics of the Ni 50.3 Ti 34.7 Zr 15 shape memory alloy were investigated as a function of aging heat treatments that result in nanometer to submicron size precipitates. Microstructure-property relationships were developed by characterizing samples using transmission electron microscopy, differential scanning calorimetry, and load-biased thermal cycling experiments. The precipitate size was found to strongly influence the martensitic transformationprecipitate interactions and ultimately the shape memory characteristics of the alloy. Aging treatments resulting in relatively fine precipitates, which are not an obstacle to twin boundaries and easily bypassed by martensite variants, exhibited higher transformation strain, lower transformation thermal hysteresis, and better thermal and dimensional stability compared to samples with relatively large precipitates. When precipitate dimensions approached several hundred nanometers in size they acted as obstacles to martensite growth, limiting martensite variant and twin size resulting in reduced functional and structural properties. Aging heat treatments were also shown to result in a wide range of transformation temperatures, increasing them above 100 °C in some cases, and affected the stress dependence of the transformation hysteresis and the stress versus transformation temperature relationships for the Ni 50.3 Ti 34.7 Zr 15 alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.