[1] Many processes lead to variability of catchment concentration-discharge relationships, but exports of geogenic (weathering derived) solutes and nutrients (nitrogen and phosphorus species) from agricultural basins display relatively constant concentrations despite large variations in streamflow. These "chemostatic" responses are hypothesized to arise when a large mass store, the parent material for geogenics or chemically recalcitrant legacies of fertilization in agricultural catchments, buffers concentration variability. This hypothesis implies that (1) chemostatic behavior should be a general response to elevated external inputs to a catchment and (2) chemostatic behavior should be predictable from theory. Data-and model-based analyses were used to explore these hypotheses. We evaluated concentration variability relative to discharge (expressed as the ratio of the coefficients of variation of concentration and flow, or CV C /CV Q ) across a gradient of increasing exported load, as a proxy for an external impact gradient. The CV C /CV Q of multiple solutes declined with increasing exported load. Exceptions included the geogenic solutes, which showed chemostatic responses for all sites, phosphorus, and some nitrogen species. Nitrate showed a suggestive pattern in CV C /CV Q with export, but further data are needed to confirm its generality. A simple model of runoff generation and solute export suggested that the decline in CV C /CV Q arises if the internal mass store is distributed homogeneously in space and there is sufficient time for mass transfer to reach steady state between runoff events. Export from catchments may become more predictable in impacted watersheds, simplifying water quality prediction but inducing strong hysteresis in recovery and making restoration efforts challenging.Citation: Thompson, S. E., N. B. Basu, J. Lascurain Jr., A. Aubeneau, and P. S. C. Rao (2011), Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients, Water Resour. Res., 47, W00J05,
[1] Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 mm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.Citation: Harvey, J. W., et al. (2012), Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed,
The majority of particulate organic matter standing stock in streams is < 1 mm in diameter, and the mobile phase is primarily very fine particles. Such fine particles transport downstream in a series of deposition and resuspension events mediated by interactions with coarser bed sediment, yielding fine particle retention over a wide range of time scales. This retention controls the opportunity for biogeochemical processing of particulate organic carbon in streams. We present a conceptual model of particulate organic carbon transport in rivers categorized in three cyclic processes: (i) migration of fine particles from the water column to the underlying and surrounding sediments, (ii) fine particle transport and retention within the bed sediments, and (iii) resuspension of fine particles back to the water column. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through pore waters, and reversible filtration within the streambed. We then apply this model to observations of fine particle transport in two small streams, and show that the stochastic mobile-immobile model supports improved interpretation of particulate organic carbon dynamics under base flow conditions. Analysis of in-stream solute and particle data shows that particles engage in multiple deposition and resuspension events during downstream transport, and that longterm retention in the streambed produces extended slow releases to the stream even during base flow conditions. We also show how multiscale stochastic modeling can be used to incorporate local observations of particle retention in predictions of whole-stream particle dynamics.
[1] Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracerinjection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.
[1] Hydrologic transport and retention strongly affect biogeochemical processes that are critical to stream ecosystems. Tracer injection studies are often used to characterize solute transport and retention in stream reaches, but the range of processes accurately resolved with this approach is not clear. Solute residence time distributions depend on both in-stream mixing and exchange with the hyporheic zone and the larger groundwater system. Observed in-stream breakthrough curves have most commonly been modeled with in-stream advection-dispersion plus an exponential residence time distribution, but process-based models suggest that hyporheic exchange is a fractal process, and that hyporheic residence time distributions are more appropriately characterized by power law tailing. We synthesized results from a variety of tracer-injection studies to investigate the information content of tracer breakthrough curves. We found that breakthrough curve tails are often not well characterized in stream tracer experiments. The two main reasons for this are: 1) experimental truncation of breakthrough curves, which occurs when sampling ends before all tracer mass reaches the sampling location, and 2) sensitivity truncation of breakthrough curves, when tracer concentrations in the tail are too low to be detected reliably above background levels. Tail truncation reduces observed mass recovery and obscures assessment of breakthrough curve tailing and solute residence time. Failure to consider tail truncation leads to underestimation of hyporheic exchange and solute retention and to corresponding overestimation of hyporheic biogeochemical transformation rates. Based on these findings, we propose criteria for improved design of in-stream tracer injection experiments to improve assessment of solute tailing behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.