We report the discovery of energetic neutral hydrogen atoms (ENAs) emitted during the X9 solar event of 2006 December 5. Beginning ∼1 hr following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6-15 MeV protons beginning hours before the onset of the main solar energetic particle event at Earth. More than 70% of these particles arrived from a longitude within ±10 • of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events < 5 MeV were due to ENAs. To our knowledge, this is the first reported observation of ENA emission from a solar flare/ coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially stripped coronal ions are an important source of ENAs in solar events.
An analytical model describing the acceleration of energetic charged particles due to cosmic-ray viscosity and fluid shear in radio jets based on the diffusive transport equation for cosmic rays is developed. The model indicates that laminar shear is not a significant mechanism for particle acceleration in nonrelativistic jets but may be important in relativistic jets. The model produces a power-law momentum spectrum of particles accelerated by the shear (i.e.,
as
, where f
0 is the isotropic phase space distribution in the scattering frame). For ultra-relativistic jets with no back-flowing cocoon,
for the energetic particle diffusion coefficient case κ ∝ p
α
. Increasing the shear in the background flow gives harder accelerated particle momentum spectra. Monoenergetic source solutions (Green’s functions) and Green’s formula are derived and used to obtain solutions for monoenergetic particle momentum spectra specified on the edge of the jet at radius r = r
2.
This presentation describes a new forecasting tool developed for and is currently being tested by NASA's Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region's free magnetic energy, determined from a data set of ~40,000 active-region magnetograms from ~1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region's free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.https://ntrs.nasa.gov/search.jsp?R=20100032971 2018-05-11T16:42:26+00:00Z
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.