Accurate pressure drop estimation in forced boiling phenomena is important during the thermal analysis and the geometric design of cryogenic heat exchangers. However, current methods to predict the pressure drop have one of two problems: lack of accuracy or generalization to different situations. In this work, we present the correlated-informed neural networks (CoINN), a new paradigm in applying the artificial neural network (ANN) technique combined with a successful pressure drop correlation as a mapping tool to predict the pressure drop of zeotropic mixtures in micro-channels. The proposed approach is inspired by Transfer Learning, highly used in deep learning problems with reduced datasets. Our method improves the ANN performance by transferring the knowledge of the Sun & Mishima correlation for the pressure drop to the ANN. The correlation having physical and phenomenological implications for the pressure drop in micro-channels considerably improves the performance and generalization capabilities of the ANN. The final architecture consists of three inputs: the mixture vapor quality, the micro-channel inner diameter, and the available pressure drop correlation. The results show the benefits gained using the correlated-informed approach predicting experimental data used for training and a posterior test with a mean relative error (mre) of 6%, lower than the Sun & Mishima correlation of 13%. Additionally, this approach can be extended to other mixtures and experimental settings, a missing feature in other approaches for mapping correlations using ANNs for heat transfer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.