Different methodologies have been developed throughout the years to identify environmental microorganisms to improve bioremediation techniques, determine susceptibility profiles of bacteria in contaminated environments, and reduce the impact of microorganisms in ecosystems. Two methods of bacterial biochemical identification are compared and the susceptibility profile of bacteria, isolated from residential and industrial wastewater, is determined. Twenty-four bacteria were retrieved from the bacteria bank of the Environmental Microbiology Laboratory at the Institute of Biology (IB) of the Universidade Federal de Pelotas, Pelotas, Brazil. Bacteria were identified by conventional biochemical tests and by the VITEK ®2 automated system. Further, the susceptibility profile to antibiotics was also determined by the automated system. Six species of bacteria (Raoutella planticola, K. pneumoniae ssp. pneumoniae , Serratia marcescens, Raoutella sp., E. cloacae and Klebsiella oxytoca) were identified by conventional biochemical tests, while three species of bacteria (K. pneumoniae ssp. pneumoniae, S. marcescens and K. oxytoca ) were identified by VITEK®2 automated system. VITEK ®2 indicated agreement in 19 (79.17%) isolates and difference in five (20.83%) isolates when compared to results from conventional biochemical tests. Further, antibiotic susceptibility profile results showed that all isolates (100%) were resistant to at least one out of the 18 antibiotics tested by VITEK®2. Thus, no multi-resistant bacteria that may be used in effluent treatment systems or in bioremediation processes have been reported. Results indicate VITEK ® 2 automated system as a potential methodology in the determination of susceptibility profile and identification of environmental bacteria.
The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2®). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.