Identifying the contribution of pre‐ and postzygotic barriers to gene flow is a key goal of speciation research. The widespread dung fly species Sepsis cynipsea and Sepsis neocynipsea offer great potential for studying the speciation process over a range of opportunities for gene exchange within and across sister species (cross‐continental allopatry, continental parapatry and sympatry). We examined the role of postcopulatory isolating barriers by comparing female fecundity and egg‐to‐adult viability of F1 and F2 hybrids, as well as backcrosses of F1 hybrids with the parental species, via replicated crosses of sym‐, para‐ and allopatric populations. Egg‐to‐adult viability was strongly but not totally suppressed in hybrids, and offspring production approached nil in the F2 generation (hybrid breakdown), indicating yet unspecified intrinsic incompatibilities. Viable F1 hybrid offspring showed almost absolute male (the heterogametic sex) sterility while females remained largely fertile, in accordance with Haldane's rule. Hybridization between the two species in European areas of sympatry (Swiss Alps) indicated only minor reinforcement based on fecundity traits. Crossing geographically isolated European and North American S. neocynipsea showed similar albeit weaker isolating barriers that are most easily explained by random genetic drift. We conclude that in this system with a biogeographic continuum of reproductive barriers, speciation is mediated primarily by genetic drift following dispersal of flies over a wide (allopatric) geographic range, with some role of natural or sexual selection in incidental or direct reinforcement of incompatibility mechanisms in areas of European sympatry. S(ubs)pecies status of continental S. neocynipsea appears warranted.
Sexual selection represents a potent force that can drive rapid population differentiation in traits related to reproductive success. Hence, sexual traits are expected to show greater population divergence than non‐sexual traits. We test this prediction by exploring patterns of morphological differentiation of the exaggerated fore femur (a male‐specific sexual trait) and the wing (a non‐sexual trait) among allopatric and sympatric populations of the widespread sister dung fly species Sepsis neocynipsea and Sepsis cynipsea (Diptera: Sepsidae). While both species occur in Eurasia, S. neocynipsea also abounds in North America, albeit previous studies suggest strong differentiation in morphology, behavior, and mating systems. To evaluate the degree of differentiation expected under neutrality between S. cynipsea, European S. neocynipsea, and North American S. neocynipsea, we genotyped 30 populations at nine microsatellite markers, revealing almost equal differentiation between and minor differentiation among geographic populations within the three lineages. Landmark‐based analysis of 18 populations reared at constant 18 and 24°C in a laboratory common garden revealed moderate temperature‐dependent phenotypic plasticity and significant heritable differentiation in size and shape of male forelegs and wings among iso‐female lines of the three lineages. Following the biological species concept, there was weaker differentiation between cross‐continental populations of S. neocynipsea relative to S. cynipsea, and more fore femur differentiation between the two species in sympatry versus allopatry (presumably due to character displacement). Contrary to expectation, wing morphology showed as much shape differentiation between evolutionary independent lineages as fore femora, providing no evidence for faster diversification of traits primarily engaged in mating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.