In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of Xray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray
We have measured the linear polarisation of hard X-ray emission from the Crab in a previously unexplored energy interval, 20-120 keV. The introduction of two new observational parameters, the polarisation fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder -a balloon-borne polarimeter. Polarisation is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterised prior to flight using both polarised and unpolarised calibration sources. We address possible systematic effects through observations of a background field. The measured polarisation fraction for the integrated Crab light-curve is (18.4 +9.8 −10.6 )%, corresponding to an upper limit (99% credibility) of 42.4%, for a polarisation angle of (149.2 ± 16.0)• .
The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the widefield optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90 • from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ∼ 2 • .Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of ∅130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities.The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ∼ 500 Mb per day, including ∼ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ∼ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.