In this paper, a new approximate analytical algorithm namely multistage optimal homotopy asymptotic method (MOHAM) is presented for the first time to obtain approximate analytical solutions for linear, nonlinear and system of initial value problems (IVPs). This algorithm depends on the standard optimal homotopy asymptotic method (OHAM), in which it is treated as an algorithm in a sequence of subinterval. The main advantage of this study is to obtain continuous approximate analytical solutions for a long time span. Numerical examples are tested to highlight the important features of the new algorithm. Comparison of the MOHAM results, standard OHAM, available exact solution and the fourth-order Runge Kutta (RK4) reveale that this algorithm is effective, simple and more impressive than the standard OHAM for solving IVPs.Keywords: Optimal homotopy asymptotic method (OHAM), multistage optimal homotopy asymptotic method (MOHAM), initial value problems, series solution, Mathematica 9. 2010 MSC: 65M10, 78A48.
In this paper, a numerical procedure called multistage optimal homotopy asymptotic method (MOHAM) is introduced to solve multipantograph equations with time delay. It was shown that the MOHAM algorithm rapidly provides accurate convergent approximate solutions of the exact solution using only one term. A comparative study between the proposed method, the homotopy perturbation method (HPM) and the Taylor matrix method are presented. The obtained results revealed that the method is of higher accuracy, effective and easy to use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.