Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high-temperature superconductors. Similarly, the new iron-based high-temperature superconductors exhibit a tetragonal-to-orthorhombic structural transition (i.e., a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here, we present an angle-resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, BaðFe 1-x Co x Þ 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals, the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.C orrelated electron systems owe their emergent phenomena to a complex array of competing electronic phases. Among these, a nematic phase is one where rotational symmetry is spontaneously broken without breaking translational symmetry (1, 2). Two well-established examples are found in certain quantum Hall states (3) and in the bilayer ruthenate Sr 3 Ru 2 O 7 (4), both of which exhibit a large transport anisotropy under the application of large magnetic fields, even though they seem to originate from apparently different physics. Recently, evidence of nematicity has also been reported in the pseudogap phase of cuprate high-temperature (high-T C ) superconductors, in both YBa 2 Cu 3 O y (5) and Bi 2 Sr 2 CaCu 2 O 8þδ (6). The proximity of the pseudogap phase to superconductivity raises the question of what role nematicity plays in relation to the mechanism of high-T C superconductivity. Intriguingly, the newly discovered iron pnictide high-T C superconductors also exhibit a nematic phase in the form of a tetragonal-to-orthorhombic structural transition that either precedes or accompanies the onset of long-range antiferromagnetic order (7,8), both of which are suppressed with doping leading to...
Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe 2 As 2 type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone ͑BZ͒ of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe 2 As 2 including the k z dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single k z cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at k z = 0, which however are gapped as the system is hole doped. On the other hand, a substantial k z dependence of the order parameter remains, with most of the pairing strength deriving from processes near k z = . These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.
Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1g) symmetry (s ± ). In particular we focus on the role of the hole pocket at the (π, π) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki et al. 1 , and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s ± state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the random phase approximation fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.