White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.
Debris discs which orbit white dwarfs are signatures of remnant planetary systems. We present 12 yr of optical spectroscopy of the metal-polluted white dwarf SDSS J1228+1040, which shows a steady variation in the morphology of the 8600 Å Ca II triplet line profiles from the gaseous component of its debris disc. We identify additional emission lines of O I, Mg I, Mg II, Fe II and Ca II in the deep co-added spectra. These emission features (including Ca H & K) exhibit a wide range in strength and morphology with respect to each other and to the Ca II triplet, indicating different intensity distributions of these ionic species within the disc. Using Doppler tomography, we show that the evolution of the Ca II triplet profile can be interpreted as the precession of a fixed emission pattern with a period in the range 24-30 yr. The Ca II line profiles vary on time-scales that are broadly consistent with general relativistic precession of the debris disc.
We present the first volume-limited sample of cataclysmic variables (CVs), selected using the accurate parallaxes provided by the second data release (DR2) of the European Space Agency Gaia space mission. The sample is composed of 42 CVs within 150 pc, including two new systems discovered using the Gaia data, and is $(77 \pm 10)$ per cent complete. We use this sample to study the intrinsic properties of the Galactic CV population. In particular, the CV space density we derive, $\rho =(4.8^{+0.6}_{-0.8}) \times 10^{-6}\, \mbox{$\mathrm{pc}^{-3}$}$, is lower than that predicted by most binary population synthesis studies. We also find a low fraction of period bounce CVs, seven per cent, and an average white dwarf mass of $\langle M_\mathrm{WD} \rangle = (0.83 \pm 0.17)\, \mathrm{M}_\odot$. Both findings confirm previous results, ruling out the presence of observational biases affecting these measurements, as has been suggested in the past. The observed fraction of period bounce CVs falls well below theoretical predictions, by at least a factor of five, and remains one of the open problems in the current understanding of CV evolution. Conversely, the average white dwarf mass supports the presence of additional mechanisms of angular momentum loss that have been accounted for in the latest evolutionary models. The fraction of magnetic CVs in the 150 pc sample is remarkably high at 36 per cent. This is in striking contrast with the absence of magnetic white dwarfs in the detached population of CV progenitors, and underlines that the evolution of magnetic systems has to be included in the next generation of population models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.