A novel non-ponderomotive absorption mechanism, originally presented by Baeva et al. [Phys. Plasmas 18, 056702 (2011)] in one dimension, is extended into higher dimensions for the first time. This absorption mechanism, the Zero Vector Potential (ZVP), is expected to dominate the interactions of ultra-intense laser pulses with critically over-dense plasmas such as those that are expected with the Extreme Light Infrastructure laser systems. It is shown that the mathematical form of the ZVP mechanism and its key scaling relations found by Baeva et al. in 1D are identically reproduced in higher dimensions. The two dimensional particle-in-cell simulations are then used to validate both the qualitative and quantitative predictions of the theory.
A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara–Kodama–Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
In this article, we showcase experimental results of methods to produce and characterize orbital angular momentum (OAM) carrying high-power lasers. The OAM pulses were produced on the ASTRA laser of the Central Laser Facility (CLF) using a continuous spiral phase plate (SPP). Three different characterization methods were then used to measure the OAM content of the beam. The methods that were used were a cylindrical lens diagnostic, an interferometric diagnostic and a projective diagnostic. We further discuss the relative advantages and disadvantages of each method in the context of high-power laser experiments.
A theoretical and numerical investigation of non-ponderomotive absorption at laser intensities relevant to quantum electrodynamics is presented. It is predicted that there is a regime change in the dependence of fast electron energy on incident laser energy that coincides with the onset of pair production via the Breit-Wheeler process. This prediction is numerically verified via an extensive campaign of QED-inclusive particle-in-cell simulations. The dramatic nature of the power law shift leads to the conclusion that this process is a candidate for an unambiguous signature that future experiments on multi-petawatt laser facilities have truly entered the QED regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.