This work reports the experimental data and kinetic modeling of diacylglycerol (DAG) production from palm oil using a commercial immobilized lipase (Lipozyme RM IM) in a solvent-free medium. The experiments were performed in batch mode, at 55 °C and 400 rpm, and the effects of enzyme concentration (0.68-2.04 wt% related to the mass of substrates), initial water concentration (5-15 wt% related to the mass of oil), and reaction time were evaluated. A novel kinetic model is presented based on the ordered-sequential bi-bi mechanism considering hydrolysis and esterification steps, in which a correlation between water-in-oil solubility and surfactant molecules concentration in the oil allowed the model to describe the induction period in the beginning of the hydrolysis reaction. Moreover, mass transfer limitations related to the enzyme concentration in the system were also taken into account. The proposed model presented a very satisfactory agreement with the experimental data, thus allowing a better understanding of the reaction kinetics. The best conditions obtained for the product (partially hydrolyzed palm oil) in terms of DAG yield (35.91 wt%) were 2.87 wt% enzyme/substrate, 2.10 wt% water/oil, and 72 h of reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.