In the quest for new energy sources, the research on controlled thermonuclear fusion 1 has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration 3, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch 4,5 (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.The main magnetic field configurations studied for the confinement of toroidal fusion-relevant plasmas are the tokamak 3 , the stellarator 6 and the reversed-field pinch 4,5 (RFP). In the tokamak, a strong magnetic field is produced in the toroidal direction by a set of coils approximating a toroidal solenoid, and the poloidal field generated by a toroidal current flowing into the plasma gives the field lines a weak helical twist. This is the configuration that has been most studied and has achieved the best levels of energy confinement time. Thus, it is the natural choice for the International Thermonuclear Experimental Reactor, which has the mission of demonstrating the scientific and technical feasibility of controlled fusion with magnetic confinement.The RFP, like the tokamak, is axisymmetric and exploits the pinch effect due to a current flowing in a plasma embedded in a toroidal magnetic field. The main difference is that, for a given plasma current, the toroidal magnetic field in a RFP is one order of magnitude smaller than in a tokamak, and is mainly generated by currents flowing in the plasma itself. This feature is underlying the main potential advantage of the RFP as a reactor concept, namely the capability of achieving fusion conditions with ohmic heating only in a much simpler and compact device. In the past, this positive feature was overcome by the poorer stability properties, which led to the growth and saturation of several magnetohydrodynamic (MHD) instabilities, eventually downgrading the confinement performance. These instabilities, represented by Fourier modes in the poloidal and toroidal angles θ and φ as exp [i(mθ − nφ) were considered as an unavoidable ingredient of the dynamo self-organization process 4,8,9 , necessary for the sustainment of the configuration in time. The occurrence of several MHD modes resonating on different plasma layers gives rise to overlapping magnetic islands, which result in a chaotic region, extending over most of the plasma volume 10 , where the magnetic surfaces are destroyed and the confinement level is modest. This conditi...
The RFX-mod machine (Sonato et al 2003 Fusion Eng. Des. 66 161) recently achieved, for the first time in a reversed-field pinch, high plasma current up to 1.6 MA with good confinement. Magnetic feedback control of magnetohydrodynamic instabilities was essential to reach the goal. As the current is raised, the plasma spontaneously accesses a new helical state, starting from turbulent multi-helical conditions. Together with this raise, the ratio between the dominant and the secondary mode amplitudes increases in a continuous way. This brings a significant improvement in the magnetic field topology, with the formation of helical flux surfaces in the core. As a consequence, strong helical transport barriers with maximum electron temperature around 1 keV develop in this region. The energy confinement time increases by a factor of 4 with respect to the lower-current, multi-helical conditions. The properties of the new helical state scale favourably with the current, thus opening promising perspectives for the higher current experiments planned for the near future.
RFX-mod is a reversed field pinch (RFP) experiment equipped with a system that actively controls the magnetic boundary. In this paper we describe the results of a new control algorithm, the clean mode control (CMC), in which the aliasing of the sideband harmonics generated by the discrete saddle coils is corrected in real time. CMC operation leads to a smoother (i.e. more axisymmetric) boundary. Tearing modes rotate (up to 100 Hz) and partially unlock. Plasma-wall interaction diminishes due to a decrease of the nonaxisymmetric shift of the plasma column. With the ameliorated boundary control, plasma current has been successfully increased to 1.5 MA, the highest for an RFP. In such regimes, the magnetic dynamics is dominated by the innermost resonant mode, the internal magnetic field gets close to a pure helix and confinement improves.
We define the safety factor q for the helical plasmas of the experiment RFX-mod by accounting for the actual three-dimensional nature of the magnetic flux surfaces. Such a profile is not monotonic but goes through a maximum located in the vicinity of the electron transport barriers measured by a high resolution Thomson scattering diagnostic. Helical states with a single axis obtained in viscoresistive magnetohydrodynamic numerical simulations exhibit similar nonmonotonic q profiles provided that the final states are preceded by a magnetic island phase, like in the experiment.
In all major confinement devices (tokamaks, stellarators, spheromaks and reversed-field pinches-RFPs), a density limit has been found. Results summarized in a recent work by Puiatti et al (2009 Nucl. Fusion 49 045012) show that in the RFP high density does not cause a disruption, but a sequence of increasingly critical phenomena. First, at intermediate density there is the disappearance of the high-confinement quasisingle helicity/single helical axis regimes. Then, at densities close to the Greenwald limit, toroidally and radially localized density accumulation and radiation condensation are observed, together with a fast resistive decay of the plasma current, which constitutes the real operative limit of the device. In this paper we discuss the effect of the magnetic ripple on test particle motion, showing that the accumulation of electrons in the X-points of the edge m = 0 islands is responsible for a modulation of the radial electric field E r which is at the core of the density limit mechanism. These results can be also relevant for the explanation of X-point multifaceted asymmetric radiation from the edge formation, observed in L-mode density limit discharges of JET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.