Upcoming and planned experiments combining increasingly intense lasers and energetic particle beams will access new regimes of nonlinear, relativistic, quantum effects. This improved experimental capability has driven substantial progress in QED in intense background fields. We review here the advances made during the last decade, with a focus on theory and phenomenology. As ever higher intensities are reached, it becomes necessary to consider processes at higher orders in both the number of scattered particles and the number of loops, and to account for non-perturbative physics (e.g. the Schwinger effect), with extreme intensities requiring resummation of the loop expansion. In addition to increased intensity, experiments will reach higher accuracy, and these improvements are being matched by developments in theory such as in approximation frameworks, the description of finite-size effects, and the range of physical phenomena analysed. Topics on which there has been substantial progress include: radiation reaction, spin and polarisation, nonlinear quantum vacuum effects and connections to other fields including physics beyond the Standard Model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.