The process kinetics, chemical composition, morphology, microstructures, and stress of rapidthermal low pressure metalorganic chemical vapor deposited (RT-LPMOCVD) TiN, films on InP, using a combined reactive chemistry of ammonia (NH,) gas and tetrakis (dimethylamido) titanium ( DMATi) liquid precursors, were studied. Enhanced deposition rates of l-3 nm s -' at total chamber pressures in the range of 3-10. Torr and temperatures of 300 "C-350 "C at a NHs:DMATi flow rate ratio of I:8 to 1:15 were achieved. Stoichiometric film compositions were obtained, with carbon and oxygen impurity concentrations as low as 5%. Transmission electron microscopy analysis identified the deposited films as TiN with some epitaxial relationship to the underlying (001) InP substrate. This process provides a superior film to the preview RT-LPMOCVD TN, film deposited using only the DMATi precursor. 993
Titanium nitride (TiNx) thin films were deposited onto InP by means of the rapid-thermal-low-pressure-chemical-vapor-deposition (RT-LPMOCVD) technique, using the tetrakis (dimethylamido) titanium (Ti(NMe2)4 or DMATi) complex as the precursor. Depositions were successfully carried out at temperatures below 550 °C, pressure range of 5–20 Torr and duration of 50 to 90 s, to give layer thicknesses up to 200 nm and growth rates in the range of 0.8 to 4.5 nm/s. These films had a stoichiometric structure and contained nitrogen and titanium in a ratio close to unity, but also contained a significant amount of carbon and oxygen. The elements were spread uniformly through the films, the nitrogen was Ti bounded, and the carbon was partially titanium bonded and organic bonded as well. The film resistivity was in the range of 400–800 μΩ cm−2; the stress was always compressive, in the range of − 0.5 × 109 to − 2 × 1010 dyne cm−2, and the film had a good morphology. These layers performed as an ohmic contact while deposited onto p-In0.53Ga0.47As material, (Zn-doped 1.2 × 1018 cm−3), provided an excellent step coverage for high aspect ratio via holes and were deposited selectively onto the InP and based materials when using SiO2 mask. This represents the first report of TiNx films deposited in a commercial RT-LPMOCVD reactor using the DMATi precursor.
Multilayer co-sintered ceramics (HTCC or LTCC) are widely used for planar sensors (such as gas sensors for oxygen, hydrogen, hydrocarbon, carbon monoxide, as well as, NOx, etc.) as well as solid oxide fuel cells, and other special applications such as high-temperature batteries and transformers for deepwell drilling. Ceramic tapes with different sintering behaviors can be modified so they can be co-sintered to build multilayer devices. One of the main challenges in building these devices is the co-sintering of a dissimilar material structure. In this study, co-sintering of yttria stabilized zirconia and insulator tapes was studied. Their sintering behaviors were modified so that the effects of sintering shrinkage and sintering rate could be separated from coefficient of thermal expansion (CTE) effects. It was found that "co-burnout" has a strong effect on the delamination and cracking of the multilayer structures built with these dissimilar materials. The layer configuration in the co-sintering structure also plays a strong role in determining the tolerance for sintering (sintering shrinkage and sintering rate) mismatch. The CTE and the sintering behavior of insulator tapes were modified to match those of zirconia tapes. Cosintering behavior of the modified insulator and zirconia tapes was examined. The effect of sintering mismatch on camber in multilayer structures is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.