Abstract. A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10) was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127) on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA) library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS). Details of the implementation in the TEOS-10 SIA library are given in a companion paper.
Abstract. The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10) was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i) almost unlimited extension with respect to additional properties or relations, (ii) an extraction of self-contained sub-libraries, (iii) separate updating of the empirical thermodynamic potentials, and (iv) code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site. 1SCOR/IAPSO: Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans 2IOC/UNESCO: Intergovernmental Oceanographic Commission/United Nations Educational, Scientific and Cultural Organization
Abstract. The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS-10) was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i) almost unlimited extension with respect to additional properties or relations, (ii) an extraction of self-contained sub-libraries, (iii) separate updating of the empirical thermodynamic potentials, and (iv) code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site. 1 SCOR/IAPSO: Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans 2 IOC/UNESCO: Intergovernmental Oceanographic Commission/United Nations Educational, Scientific and Cultural Organization
This paper addresses the problem of incorporating soft and hard QoS support into the traditional utility-based power control problem. We present some novel problem formulations, prove relevant properties of optimal solutions and propose decentralized recursive algorithms with global convergence. Finally, the convergence behavior and the throughput performance are verified numerically.
This paper addresses the problem of incorporating soft and hard QoS support into the traditional utility-based power control problem. We present some novel problem formulations, prove relevant properties of optimal solutions and propose decentralized recursive algorithms with global convergence. Finally, the convergence behavior and the throughput performance are verified numerically
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.