Radiation therapy is a mainstay in the treatment of glioblastomas, but these tumors are often associated with radioresistance. Activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway, which occurs frequently in glioblastomas due to inactivation of the tumor suppressor phosphatase and tensin homologue (PTEN), correlates with radioresistance. To directly test the link between Akt activation and radioresistance, we utilized PTEN-deficient U251 glioblastoma cells engineered to inducibly restore PTEN upon exposure to doxycycline. These cells showed high basal levels of Akt activation (i.e. high levels of phospho-Akt), but induction of PTEN led to substantially decreased phospho-Akt and was associated with radiosensitization. To investigate whether the PTEN-induced radiosensitization was attributable to impaired sensing versus repair of DNA damage, we assessed levels of ␥-H2AX after ionizing radiation in U251 cells induced for PTEN. Initial post-radiation levels of ␥-H2AX foci were not decreased in PTEN-induced cells; however, the resolution of these foci was significantly delayed. In contrast to these results, induction of phosphatase-dead PTEN showed no appreciable effect. Finally, exposure of cells to the PI3K inhibitor LY294002 did not decrease the occurrence of ␥-H2AX foci after irradiation but did markedly delay their resolution. These results together support a direct link between Akt activation, repair of DNA damage, and radioresistance in glioblastoma. Targeting the PI3K/Akt pathway may modulate DNA repair to improve the efficacy of radiation therapy.Glioblastoma multiforme, the most common primary adult brain tumor, has a dismal prognosis. Even with aggressive surgery, radiotherapy, and chemotherapy, the median survival for patients with glioblastomas is under one year (1, 2). The phosphatidylinositol-3-OH kinase (PI3K) 3 signaling pathway is commonly activated in these tumors, often by virtue of PTEN gene mutation but possibly also by epidermal growth factor receptor expression (3, 4). PTEN encodes a phosphatase that dephosphorylates phosphatidylinositol-3,4,5 triphosphate to convert it to phosphatidylinositol-4,5 bisphosphate. Therefore, inactivation of PTEN leads to increased levels of phosphatidylinositol-3,4,5 triphosphate and increased Akt activation (5). Conversely, restoration of PTEN leads to inhibition of Akt. Chakravarti et al. (3) found significantly reduced survival times in patients whose tumors showed PI3K pathway activation. These patients were treated with a combination of surgery with postoperative radiation as the only adjuvant therapy, which suggested that this pathway might play an important role in radiation resistance.One of the factors implicated in radioresistance is activation of the Ras/PI3K/Akt pathway (6, 7). Data from numerous investigators show that inhibition of this pathway leads to radiosensitization, not just of glioblastomas but also carcinoma of the colon, bladder, prostate, head and neck, and cervix (6 -15).The precise mechanism by which the PI3K/Akt pathw...