A reduced ability to increase cardiac output (CO) during exercise limits blood flow by vasoconstriction even in active skeletal muscle. Such a flow limitation may also take place in the brain as an increase in the transcranial Doppler determined middle cerebral artery blood velocity (MCA V(mean)) is attenuated during cycling with beta-1 adrenergic blockade and in patients with heart insufficiency. We studied whether sympathetic blockade at the level of the neck (0.1% lidocaine; 8 mL; n=8) affects the attenuated exercise - MCA V(mean following cardio-selective beta-1 adrenergic blockade (0.15 mg kg(-1) metoprolol i.v.) during cycling. Cardiac output determined by indocyanine green dye dilution, heart rate (HR), mean arterial pressure (MAP) and MCA V(mean) were obtained during moderate intensity cycling before and after pharmacological intervention. During control cycling the right and left MCA V(mean) increased to the same extent (11.4 +/- 1.9 vs. 11.1 +/- 1.9 cm s(-1)). With the pharmacological intervention the exercise CO (10 +/- 1 vs. 12 +/- 1 L min(-1); n=5), HR (115 +/- 4 vs. 134 +/- 4 beats min(-1)) and delta MCA V(mean) (8.7 +/- 2.2 vs. 11.4 +/- 1.9 cm s(-1) were reduced, and MAP was increased (100 +/- 5 vs. 86 +/- 2 mmHg; P < 0.05). However, sympathetic blockade at the level of the neck eliminated the beta-1 blockade induced attenuation in delta MCA V(mean) (10.2 +/- 2.5 cm s(-1)). These results indicate that a reduced ability to increase CO during exercise limits blood flow to a vital organ like the brain and that this flow limitation is likely to be by way of the sympathetic nervous system.
To investigate the role of sympathoadrenergic activity on glucose production (Ra) during exercise, eight healthy males bicycled 20 min at 41 +/- 2 and 74 +/- 4% maximal O2 uptake (VO2max; mean +/- SE) either without (control; Co) or with blockade of sympathetic nerve activity to liver and adrenal medulla by local anesthesia of the celiac ganglion (Bl). Epinephrine (Epi) was in some experiments infused during blockade to match (normal Epi) or exceed (high Epi) Epi levels during Co. A constant infusion of somatostatin and glucagon was given before and during exercise. At rest, insulin was infused at a rate maintaining euglycemia. During intense exercise, insulin infusion was halved to mimic physiological conditions. During exercise, Ra increased in Co from 14.4 +/- 1.0 to 27.8 +/- 3.0 mumol.min-1.kg-1 (41% VO2max) and to 42.3 +/- 5.2 (74% VO2max; P < 0.05). At 41% VO2max, plasma glucose decreased, whereas it increased during 74% VO2max. Ra was not influenced by Bl. In high Epi, Ra rose more markedly compared with control (P < 0.05), and plasma glucose did not fall during mild exercise and increased more during intense exercise (P < 0.05). Free fatty acid and glycerol concentrations were always lower during exercise with than without celiac blockade. We conclude that high physiological concentrations of Epi can enhance Ra in exercising humans, but normally Epi is not a major stimulus. The study suggests that neither sympathetic liver nerve activity is a major stimulus for Ra during exercise. The Ra response is enhanced by a decrease in insulin and probably by unknown stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)
The adrenocortical and hyperglycemic responses to hysterectomy were studied in five groups of patients receiving: general anesthesia (group I), general anesthesia + epidural analgesia extending from Th10-S5 (group II), general anesthesia + epidural analgesia extending from Th8-S4--5 (group III), general anesthesia + epidural analgesia extending from Th4--6-S5 (group IV) and epidural analgesia extending from Th4-S5 without general anesthesia (group V). The results showed that the cortisol response was abolished in group V, inhibited in group IV and normal in groups II and III. The hyperglycemic response to surgery was inhibited in groups II, III and IV, and abolished in group V. Epidural analgesia from Th4 to S5, preventing the adrenocortical and hyperglycemic responses to hysterectomy, and possibly also inhibiting other components of the endocrine-metabolic response to surgery, may have important applications in further studies of the physiologic significance of the endocrine-metabolic response to surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.