The vast majority of multifocal electroretinogram (mfERG) signal analyses to detect glaucoma study the signals' amplitudes and latencies. The purpose of this paper is to investigate application of wavelet analysis of mfERG signals in diagnosis of glaucoma. This analysis method applies the continuous wavelet transform (CWT) to the signals, using the real Morlet wavelet. CWT coefficients resulting from the scale of maximum correlation are used as inputs to a neural network, which acts as a classifier. mfERG recordings are taken from the eyes of 47 subjects diagnosed with chronic open-angle glaucoma and from those of 24 healthy subjects. The high sensitivity in the classification (0.894) provides reliable detection of glaucomatous sectors, while the specificity achieved (0.844) reflects accurate detection of healthy sectors. The results obtained in this paper improve on the previous findings reported by the authors using the same visual stimuli and database.
Introduction
The aim of this study is to develop a computer-aided diagnosis system to identify subjects at differing stages of development of multiple sclerosis (MS) using multifocal visual-evoked potentials (mfVEPs). Using an automatic classifier, diagnosis is performed first on the eyes and then on the subjects.
Patients
MfVEP signals were obtained from patients with Radiologically Isolated Syndrome (RIS) (n = 30 eyes), patients with Clinically Isolated Syndrome (CIS) (n = 62 eyes), patients with definite MS (n = 56 eyes) and 22 control subjects (n = 44 eyes). The CIS and MS groups were divided into two subgroups: those with eyes affected by optic neuritis (ON) and those without (non-ON).
Methods
For individual eye diagnosis, a feature vector was formed with information about the intensity, latency and singular values of the mfVEP signals. A flat multiclass classifier (FMC) and a hierarchical classifier (HC) were tested and both were implemented using the k-Nearest Neighbour (k-NN) algorithm. The output of the best eye classifier was used to classify the subjects. In the event of divergence, the eye with the best mfVEP recording was selected.
Results
In the eye classifier, the HC performed better than the FMC (accuracy = 0.74 and extended Matthew Correlation Coefficient (MCC) = 0.68). In the subject classification, accuracy = 0.95 and MCC = 0.93, confirming that it may be a promising tool for MS diagnosis.
Conclusion
In addition to amplitude (axonal loss) and latency (demyelination), it has shown that the singular values of the mfVEP signals provide discriminatory information that may be used to identify subjects with differing degrees of the disease.
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.