In this study, we focus on qualitative differences in the network structure and dynamics of natural as well as poly(butadiene) rubber in dependence of the cure system (sulfur/accelerator or organic peroxide) used in the vulcanization process. The spatial homogeneity of the distribution of chemical and physical cross-links in the network is assessed via the quantitative measurement of proton-proton residual dipolar couplings as measured by static multiple-quantum (MQ) NMR spectroscopy at low field. The experiment also provides information on the apparent correlation time of fast segmental fluctuations that dominate chain relaxation processes at lower temperature, for which we also find characteristic differences. Vulcanization via a radical mechanism (using organic peroxides) leads to networks with a high content of nonelastic defects (loops or dangling chains), a rather inhomogeneous distribution of cross-links, and modified (slower) local dynamics, as compared to networks obtained by sulfur vulcanization. These microstructural factors can be related with the well-known differences in the macroscopic properties of diene rubbers vulcanized with different cure systems.
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications.
With the general objective to design polymer based materials with specific thermal and mechanical properties, a systematic study on the crystallinity and the mechanical properties of synthesized linear tri-block copolymers based on poly(L-lactic acid) and poly(ε -caprolactone) and of their corresponding poly(ester-urethane)s has been performed. In particular, eleven tri-block copolymers were 10 synthesized varying both the molecular weight of the blocks as well as the relative content of each block in the copolymer, focusing the attention on the relationship between their chemical compositions and their tailored final properties in order to tune them taking into account their possible applications (i.e. as shape memory materials). From them, eleven poly(ester-urethane)s were synthesized by condensation with hexamethylene diisocyanate (HDI). The chemical composition of the synthesized polymers was studied and correlated with their thermal and crystalline properties obtained by both dynamic scanning calorimetry (DSC) and small angle X-ray diffraction 15 (SAXS) experiments. The relationship between their crystalline structure, thermal and mechanical properties with the molecular weight as well as with the relative content of each comonomer in the copolymers and the amount of HDI in the poly(ester-urethane) was analysed. The results obtained demonstrate that these bio tri-block copolymers and the corresponding poly(ester-urethane)s can be tailored with interesting crystalline and mechanical properties. Future applications as shape memory systems are thus envisaged.
An experimental approach based on the freezing‐point depression of a solvent in a swollen gel has been developed to characterize the structure of rubber networks. This property depends on the conditions required for the formation of crystalline nuclei, which are limited by the elastomer network restrictions. Information about the functionality, spatial distribution, and number of crosslinks can be obtained by the use of this easy and ready experimental method. Application of the tube model of rubber elasticity in the uniaxial stress–strain experiments of natural rubber samples vulcanized with dicumyl peroxide yields the characteristic parameters of the rubber networks, which are in concordance with the network structures predicted by the freezing point method. Finally influence of vulcanization conditions in network structure and its relationship with the mechanical properties was evaluated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 544–556, 2007
A step forward in the understanding of rubber vulcanization with organic peroxides is provided by combining a proper arrangement between polymer, vulcanizing agent and cure conditions. For this purpose, an ethylene-vinyl acetate copolymer with a high content of vinyl acetate (70 mol%) was used since a fully saturated polymer backbone allows its vulcanization via peroxide. For the range of conditions analysed here, it is shown that the predominant process taking place is crosslinking via radical recombination, minimizing or even avoiding undesirable secondary reactions such us polymer degradation. Once conditions had been optimized, peroxide vulcanization was analysed in more depth in the presence of 2,2,6,6tetramethylpiperidinyloxyl, which is a mediating stable free radical commonly used in controlled radical polymerization. Consequently, it was possible to differentiate the termination reaction from the initiation and propagation steps, allowing the determination of the enthalpy of formed C-C crosslinks as measured using calorimetry. It was possible to isolate and determine the contribution of the crosslinking pathway from the global vulcanization reaction by means of calorimetric methods at optimum conditions. In fact, this simple methodology could be an important tool for understanding in detail the complex peroxide vulcanization of elastomers since reactions involved in this process determine the final network structure, and thus the final elastic properties of these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.