BACKGROUND AND PURPOSE Amylin (Amy) is an important glucoregulatory peptide and AMY receptors are clinical targets for diabetes and obesity. Human (h) AMY receptor subtypes are complexes of the calcitonin (CT) receptor with receptor activity‐modifying proteins (RAMPs); their rodent counterparts have not been characterized. To allow identification of the most clinically relevant receptor subtype, the elucidation of rat (r) AMY receptor pharmacology is necessary. EXPERIMENTAL APPROACH Receptors were transiently transfected into COS‐7 cells and cAMP responses measured in response to different agonists, with or without antagonists. Competition binding experiments were performed to determine rAmy affinity. KEY RESULTS rCT was the most potent agonist of rCT(a) receptors, whereas rAmy was most potent at rAMY1(a) and rAMY3(a) receptors. rAmy bound to these receptors with high affinity. Rat α‐calcitonin gene‐related peptide (CGRP) was equipotent to rAmy at both AMY receptors. Rat adrenomedullin (AM) and rAM2/intermedin activated all three receptors but were most effective at rAMY3(a). AC187, AC413 and sCT8‐32 were potent antagonists at all three receptors. rαCGRP8‐37 displayed selectivity for rAMY receptors over rCT(a) receptors. rAMY8‐37 was a weak antagonist but was more effective at rAMY1(a) than rAMY3(a). CONCLUSIONS AND IMPLICATIONS AMY receptors were generated by co‐expression of rCT(a) with rRAMP1 or 3, forming rAMY1(a) and rAMY3(a) receptors, respectively. CGRP was more potent at rAMY than at hAMY receptors. No antagonist tested was able to differentiate the rAMY receptor subtypes. The data emphasize the need for and provide a useful resource for developing new CT or AMY receptor ligands as pharmacological tools or potential clinical candidates. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein‐Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.