We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accuracy.Peer ReviewedPostprint (published version
The topological sensitivity analysis for the heterogeneous and anisotropic elasticity problem in two-dimensions is performed in this work. The main result of the paper is an analytical closed-form of the topological derivative for the total potential energy of the problem. This derivative displays the sensitivity of the cost functional (the energy in this case) when a small singular perturbation is introduced in an arbitrary point of the domain. In this case, we consider a small disc with a completely different elastic material. Full mathematical justification for the derived formula, and derivations of precise estimates for the remainders of the topological asymptotic expansion are provided. Finally, the influence of the heterogeneity and anisotropy is shown through some numerical examples of structural topology optimization.
SummaryIn this work, a new strategy for solving multiscale topology optimization problems is presented. An alternate direction algorithm and a precomputed offline microstructure database (Computational Vademecum) are used to efficiently solve the problem. In addition, the influence of considering manufacturable constraints is examined. Then, the strategy is extended to solve the coupled problem of designing both the macroscopic and microscopic topologies. Full details of the algorithms and numerical examples to validate the methodology are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.