PurposeHistological analysis of the remodelling process of human hamstring tendon (HT) grafts after standardized anterior cruciate ligament reconstruction (ACLR) with an accelerated rehabilitation protocol.MethodsSixty-seven patients underwent retrieval of mid-substance biopsies after clinically successful hamstring autograft ACLR. Samples were allocated to one of three groups depending on the time point of retrieval: group 1 (6–12 months; n = 15), group 2 (13–24 months; n = 16) and group 3 (>24 months; n = 11).Biopsies from native HT (n = 17) and ACL (n = 8) served as controls. Cellular density, vascular density and myofibroblast density and collagen fibril alignment were analysed by haematoxylin–eosin, Masson-Goldner-Trichrom and immunohistochemical staining protocols.ResultsCompared with native HT (330.4/mm²), total cell number was increased in groups 1-3 (Group 1 = 482.0/mm² (P = 0.036); group 2 = 850.9/mm² (P = 0.005); and group 3 = 595.6/mm² (P = 0.043). There were no significant differences between the groups for vessel density. Myofibroblast density was higher in group 2 (199.6/mm²) compared with native HT (1.9/mm², P = 0.014). Collagen orientation was irregular up to 12 months. Thereafter, collagen orientation became more regular, adapting to, but not fully restoring, the appearance of the intact ACL. For the first 12 months, cells were predominantly ovoid. Ensuing cell morphology changed to spindle shaped in group 2 and predominantly narrow long cells over 24 months.ConclusionHuman hamstring grafts showed typical stages of graft remodelling, which was not complete up to 2 years after ACLR. The remodelling process in humans was prolonged compared with the results obtained in several animal studies.
Level of evidenceCase–control study, Level III.
The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups <32 wks GA/>32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04-0.15 Hz) and high frequency range (0.15-0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced <32 wks GA. Beyond that GA SDNN/RMSSD is predominantly determined by RMSSD during fHRP I and by SDNN during fHRP II. In contrast to fHRP I, during fHRP II, mHR is positively correlated to SDNN/RMSSD instead of SDNN >32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP.
Intrauterine growth restriction (IUGR) remains a major problem in perinatal medicine because of the variety of its underlying causes and the prediction of its outcome. Characteristics of heartbeat interval patterns are associated with neuro-vegetative and humoral regulatory processes. Fetal magnetocardiography allows non-invasive assessment of these processes with high precision throughout the second half of gestation. The aim of our study was the analysis of linear and non-linear parameters of fetal heart rate fluctuations to distinguish between IUGR fetuses and a cohort of normal subjects, both pre-selected from heart-rate traces representing a quiet state of activity in the third trimester of gestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.