ObjectiveThe study is aimed at widening the clinical and genetic spectrum and at assessing genotype-phenotype associations in QARS encephalopathy.MethodsThrough diagnostic gene panel screening in an epilepsy cohort, and recruiting through GeneMatcher and our international network, we collected 10 patients with biallelic QARS variants. In addition, we collected data on 12 patients described in the literature to further delineate the associated phenotype in a total cohort of 22 patients. Computer modeling was used to assess changes on protein folding.ResultsBiallelic pathogenic variants in QARS cause a triad of progressive microcephaly, moderate to severe developmental delay, and early-onset epilepsy. Microcephaly was present at birth in 65%, and in all patients at follow-up. Moderate (14%) or severe (73%) developmental delay was characteristic, with no achievement of sitting (85%), walking (86%), or talking (90%). Additional features included irritability (91%), hypertonia/spasticity (75%), hypotonia (83%), stereotypic movements (75%), and short stature (56%). Seventy-nine percent had pharmacoresistant epilepsy with mainly neonatal onset. Characteristic cranial MRI findings include early-onset progressive atrophy of cerebral cortex (89%) and cerebellum (61%), enlargement of ventricles (95%), and age-dependent delayed myelination (88%). A small subset of patients displayed a less severe phenotype.ConclusionsThese data revealed first genotype-phenotype associations and may serve for improved interpretation of new QARS variants and well-founded genetic counseling.
BackgroundDeciphering the monogenetic causes of neurodevelopmental disorders (NDD) is an important milestone to offer personalized care. But the plausibility of reported candidate genes in exome studies often remains unclear, which slows down progress in the field.MethodsWe performed exome sequencing (ES) in 198 cases of NDD. Cases that remained unresolved (n=135) were re-investigated in a research setting. We established a candidate scoring system (CaSc) based on 12 different parameters reflecting variant and gene attributes as well as current literature to rank and prioritize candidate genes.ResultsIn this cohort, we identified 158 candidate variants in 148 genes with CaSc ranging from 2 to 11.7. Only considering the top 15% of candidates, 14 genes were already published or funneled into promising validation studies.ConclusionsWe promote that in an approach of case by case re-evaluation of primarily negative ES, systematic and standardized scoring of candidate genes can and should be applied. This simple framework enables better comparison, prioritization, and communication of candidate genes within the scientific community. This would represent an enormous benefit if applied to the tens of thousands of negative ES performed in routine diagnostics worldwide and speed up deciphering the monogenetic causes of NDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.