SUMMARY Moraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M. catarrhalis, allowing the adequate determination and taxonomic positioning of this pathogen. Over the same period, studies have revealed its involvement in respiratory (e.g., sinusitis, otitis media, bronchitis, and pneumonia) and ocular infections in children and in laryngitis, bronchitis, and pneumonia in adults. The development of (molecular) epidemiological tools has enabled the national and international distribution of M. catarrhalis strains to be established, and has allowed the monitoring of nosocomial infections and the dynamics of carriage. Indeed, such monitoring has revealed an increasing number of Β-lactamase-positive M. catarrhalis isolates (now well above 90%), underscoring the pathogenic potential of this organism. Although a number of putative M. catarrhalis virulence factors have been identified and described in detail, their relationship to actual bacterial adhesion, invasion, complement resistance, etc. (and ultimately their role in infection and immunity), has been established in a only few cases. In the past 10 years, various animal models for the study of M. catarrhalis pathogenicity have been described, although not all of these models are equally suitable for the study of human infection. Techniques involving the molecular manipulation of M. catarrhalis genes and antigens are also advancing our knowledge of the host response to and pathogenesis of this bacterial species in humans, as well as providing insights into possible vaccine candidates. This review aims to outline our current knowledge of M. catarrhalis, an organism that has evolved from an emerging to a well-established human pathogen.
To compare commonly used phenotypic methods with genotypic identification methods 47 clinical isolates of coagulase-negative staphylococci (CONS), 10 CONS ATCC strains, and a Staphylococcus aureus clinical isolate were identified using the API Staph ID test, BD Phoenix Automated Microbiology System, and 16S rRNA gene and tuf gene sequencing. When necessary part of the sodA gene was sequenced for definitive identification. The results show that tuf gene sequencing is the best method for identification of CONS, but the API Staph ID test is a reasonably reliable phenotypic alternative. The performance of the BD Phoenix Automated Microbiology System for identification of CONS is poor. The present study also showed that although genotypic methods are clearly superior to phenotypic identifications, a drawback of sequence-based genotypic methods may be a lack of quality of deposited sequences in data banks. In particular, 16S rRNA gene sequencing suffers from the lack of high quality among sequences deposited in GenBank. Furthermore, genotypic identification based on 16S rRNA sequences has limited discriminating power for closely related Staphylococcus species. We propose partial sequencing of the tuf gene as a reliable and reproducible method for identification of CONS species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.